Question

In: Statistics and Probability

Suppose we have the following pdf for the random variable X f(x) ={x 0<=x<=1 c/x^2 1<=x<=...

Suppose we have the following pdf for the random variable X

f(x) ={x 0<=x<=1

c/x^2 1<=x<= infinity

0 otherwise

}

(a) 2 points Find the value c such that f(x) is a valid pdf.

(b) 3 points Find the cdf of X.

(c) 1 point Find the 75th percentile of X.

Solutions

Expert Solution

(a)

c is found by noting that the Total Probability = 1.

Thus, we get:

i.e.,

between limits1 to

Applying limits, we get:

0-(c) = 1

So,

c = 1

(b)

Thus,

pdf of X is given by:

,

                        for 1 X

The cdf of X is got by integrating f(x) between 1 to x as follows:

between limits 1 to x.

Applying limits, we get:

Thus, cdf of X is given by:

F(x) = 0 for x < 1

   for

(c)

75th percentile is got as follows:

i.e.,

between limits 1 to x..

Applying limits, we get:

So,

we get:

So

75th percentile = 4


Related Solutions

5. Consider a random variable with a piecewise-constant PDF f(x) = 1/2, 0 < x ?...
5. Consider a random variable with a piecewise-constant PDF f(x) = 1/2, 0 < x ? 1, 1/8, 1 < x ? 3, 1/12 , 3 < x < 6. Design the simulation algorithm using the inverse-transform method.
Let X be a continuous random variable with pdf: f(x) = ax^2 − 2ax, 0 ≤...
Let X be a continuous random variable with pdf: f(x) = ax^2 − 2ax, 0 ≤ x ≤ 2 (a) What should a be in order for this to be a legitimate p.d.f? (b) What is the distribution function (c.d.f.) for X? (c) What is Pr(0 ≤ X < 1)? Pr(X > 0.5)? Pr(X > 3)? (d) What is the 90th percentile value of this distribution? (Note: If you do this problem correctly, you will end up with a cubic...
Let X be a exponential random variable with pdf f(x) = λe−λx for x > 0,...
Let X be a exponential random variable with pdf f(x) = λe−λx for x > 0, and cumulative distribution function F(x). (a) Show that F(x) = 1−e −λx for x > 0, and show that this function satisfies the requirements of a cdf (state what these are, and show that they are met). [4 marks] (b) Draw f(x) and F(x) in separate graphs. Define, and identify F(x) in the graph of f(x), and vice versa. [Hint: write the mathematical relationships,...
Let X be a uniform random variable with pdf f(x) = λe−λx for x > 0,...
Let X be a uniform random variable with pdf f(x) = λe−λx for x > 0, and cumulative distribution function F(x). (a) Show that F(x) = 1−e −λx for x > 0, and show that this function satisfies the requirements of a cdf (state what these are, and show that they are met). [4 marks] (b) Draw f(x) and F(x) in separate graphs. Define, and identify F(x) in the graph of f(x), and vice versa. [Hint: write the mathematical relationships,...
2. Let X be a continuous random variable with PDF ?fx(x)= cx(1 − x), 0 <...
2. Let X be a continuous random variable with PDF ?fx(x)= cx(1 − x), 0 < x < 1, 0 elsewhere. (a) Find the value of c such that fX(x) is indeed a PDF. (b) Find P(−0.5 < X < 0.3). (c) Find the median of X.
Suppose that a random variable X has a pdf f(x) = ke^(-3x^2+6x-5), -infinity < x <...
Suppose that a random variable X has a pdf f(x) = ke^(-3x^2+6x-5), -infinity < x < infinity (a) Find k. (b) Find the mean and variance of X. (c) Find the probability that X is between 1 and 1.5.
Suppose that a random variable X has a pdf f(x) = ke^(-3x^2+6x-5), -infinity < x <...
Suppose that a random variable X has a pdf f(x) = ke^(-3x^2+6x-5), -infinity < x < infinity (a) Find k. (b) Find the mean and variance of X. (c) Find the probability that X is between 1 and 1.5.
Suppose that a random variable X has a pdf f(x) = ke^(-3x^2+6x-5), -infinity < x <...
Suppose that a random variable X has a pdf f(x) = ke^(-3x^2+6x-5), -infinity < x < infinity (a) Find k. (b) Find the mean and variance of X. (c) Find the probability that X is between 1 and 1.5.
Suppose that a random variable X has a pdf f(x) = ke^(-3x^2+6x-5), -infinity < x <...
Suppose that a random variable X has a pdf f(x) = ke^(-3x^2+6x-5), -infinity < x < infinity (a) Find k. (b) Find the mean and variance of X. (c) Find the probability that X is between 1 and 1.5.
(15 pts) Suppose that the continuous random variable X has pdf ?(?) = { ?; 0...
(15 pts) Suppose that the continuous random variable X has pdf ?(?) = { ?; 0 < ? < 2 2?; 5 < ? < 10 0; otherwise a) Determine the value of c that makes this a legitimate pdf. b) Sketch a graph of this pdf. c) Determine the cumulative distribution function (cdf) of X. d) Sketch a graph of this cdf. e) Calculate ? = ?(?) and ? = ??(?). f) What is ?(? = ?)? g) Compute...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT