In: Economics
Questions 1 through 3 refer to a duopoly market in which the inverse demand function is given by P = 96 − Q. Firm 1's cost function is c(q1) = 6q1 + 0.5q12, and firm 2's cost function is c(q2) = 6q2 + 0.5q22 (such that each firm has MC = 6 + q).
Q1.The Cournot best-response function for firm 1 will be:
a.q1 = 30 − q2/2
b.q1 = 22.5 − q2/4
c.None of the other answers is correct.
d.q1 = 30 − q2/3
e.q1 = 45 − q2/2
Q2.The outputs of the two firms in Cournot-Nash equilibrium will be:
a.q1 = q2 = 18
b.q1 = q2 = 45
c.q1 = q2 = 30
d.q1 = q2 = 22.5
e.None of the other answers is correct.
Q3.The profits of the two firms in Cournot-Nash equilibrium will be:
a.π1 = π2 = 450
b.None of the other answers is correct.
c.π1 = π2 = 1012.5
d.π1 = π2 = 759.4 (to 1 dp)
e.π1 = π2 = 900
1)
Given P=96-Q
where Q=q1+q2
Now take the case of firm 1
Total Revenue=TR1=P*q1=(96-q1-q2)*q1=96q1-q1^2-q1*q2
Marginal Revenue=MR1=dTR1/dq1=96-2q1-q2
Set MR1=MC1 for profit maximization
96-2q1-q2=6+q1
90-3q1-q2=0
3q1=90-q2
q1=30-(1/3)q2 (Response function of firm 1)
Correct option is
d. q1 = 30 − q2/3
2)
Now take the case of firm 2
Total Revenue=TR2=P*q2=(96-q1-q2)*q2=96q2-q1*q2-q2^2
Marginal Revenue=MR2=dTR2/dq2=96-q1-2q2
Set MR2=MC2 for profit maximization
96-q1-2q2=6+q2
90-3q2-q1=0
3q2=90-q1
Set q1=30-(1/3)q2 (Refer response function of firm 1)
3q2=90-30+(1/3)*q2
8/3q2=60
q2=(60*3/8)=22.50
q1=30-(1/3)q2=30-(1/3)*22.5=22.50
Correct option is
d. q1 = q2 = 22.5
3)
P=96-(q1+q2)=96-(22.5+22.5)=$51
Total Revenue of firm 1=TR1=P*q1=51*22.5=$1147.5
Total Cost=TC1=6q1+0.5q1^2=6*22.5+0.5*22.5^2=$388.125
Profit of firm 1=TR1-TC1=1147.5-388.125=$759.375 or say $759.4
Total Revenue of firm 2=TR2=P*q2=51*22.5=$1147.5
Total Cost=TC2=6q2+0.5q2^2=6*22.5+0.5*22.5^2=$388.125
Profit of firm 2=TR2-TC2=1147.5-388.125=$759.375 or say $759.4
Correct option is
d.π1 = π2 = 759.4 (to 1 dp)