Question

In: Economics

Two firms compete as a Stackellberg duopoly. The inverse market demand function they face is P...

Two firms compete as a Stackellberg duopoly. The inverse market demand function they face is P = 65 – 3Q. The cost function for each firm is C(Q) = 11Q. The outputs of the two firms are

Solutions

Expert Solution


Related Solutions

Two firms compete as a Stackelberg duopoly. The inverse market demand function they face is P...
Two firms compete as a Stackelberg duopoly. The inverse market demand function they face is P = 65 – 3Q. The cost function for each firm is C(Q) = 11Q. The outputs of the two firms are QL = 9, QF = 4.5 QL = 9, QF = 10.5 QL = 6, QF = 3 QL = 4, QF = 2 Please help/ explain. Thank you
Two firms compete in a homogeneous product market where the inverse demand function is P =...
Two firms compete in a homogeneous product market where the inverse demand function is P = 10 -2Q (quantity is measured in millions). Firm 1 has been in business for one year, while Firm 2 just recently entered the market. Each firm has a legal obligation to pay one year’s rent of $0.5 million regardless of its production decision. Firm 1’s marginal cost is $2, and Firm 2’s marginal cost is $6. The current market price is $8 and was...
Two firms compete in a market to sell a homogeneous product with inverse demand function P...
Two firms compete in a market to sell a homogeneous product with inverse demand function P = 600 − 3Q. Each firm produces at a constant marginal cost of $300 and has no fixed costs. Use this information to compare the output levels and profits in settings characterized by Cournot, Stackelberg, Bertrand, and collusive behavior.
Two firms compete in a homogeneous product market where the inverse demand function is P =...
Two firms compete in a homogeneous product market where the inverse demand function is P = 20 -5Q (quantity is measured in millions). Firm 1 has been in business for one year, while Firm 2 just recently entered the market. Each firm has a legal obligation to pay one year’s rent of $1 million regardless of its production decision. Firm 1’s marginal cost is $2, and Firm 2’s marginal cost is $10. The current market price is $15 and was...
Two firms compete in a market to sell a homogeneous product with inverse demand function P...
Two firms compete in a market to sell a homogeneous product with inverse demand function P = 400 – 2Q. Each firm produces at a constant marginal cost of $50 and has no fixed costs -- both firms have a cost function C(Q) = 50Q. If the market is defined as a Bertrand Oligopoly, what is the market price? Refer to the information above. What is the total amount of Q produced in this market? How much does firm 1...
Question 4 Two firms compete as a Stackelberg duopoly. The demand they face is P =...
Question 4 Two firms compete as a Stackelberg duopoly. The demand they face is P = 40 − Q. The cost function for each firm is C(Q) = 4Q. What are the profits of the two firms? I believe the answer is πL = $162; πF = $81. however I need clear steps to understand how to understand the process.
Two firms operate in a Cournot duopoly and face an inverse demand curve given by P...
Two firms operate in a Cournot duopoly and face an inverse demand curve given by P = 200 - 2Q, where Q=Q1+Q2 If each firm has a cost function given by C(Q) = 20Q, how much output will each firm produce at the Cournot equilibrium? a. Firm 1 produces 45, Firm 2 produces 45. b. Firm 1 produces 30, Firm 2 produces 30 c. Firm 1 produces 45, Firm 2 produces 22.5 d. None of the above.
Two firms compete in a market with inverse demand P(Q) = a − Q, where the...
Two firms compete in a market with inverse demand P(Q) = a − Q, where the aggregate quantity is Q = q1 + q2. The profit of firm i ∈ {1, 2} is πi(q1, q2) = P(Q)qi − cqi , where c is the constant marginal cost, with a > c > 0. The timing of the game is: (1) firm 1 chooses its quantity q1 ≥ 0; (2) firm 2 observes q1 and then chooses its quantity q2 ≥...
1. Two firms compete in Cournot competition. Inverse demand in the market is given by P...
1. Two firms compete in Cournot competition. Inverse demand in the market is given by P = 1500 − 3 Q and each firm has constant marginal cost c = 420. a) Assuming there are no fixed costs, find the Cournot equilibrium market price and quantities produced by each firm. (20 points) b) Now suppose that each firm faces a non-sunk fixed cost of 20,000 if they produce at all. Would the firms still want to produce the amounts you...
Refer to a duopoly market in which the inverse demand function is given by P =...
Refer to a duopoly market in which the inverse demand function is given by P = 96 − Q. Firm 1's cost function is c(q1) = 6q1 + 300, and firm 2's cost function is c(q2) = 6q2 + 600 (such that each firm has MC = 6). Q1: The outputs of the two firms in Cournot-Nash equilibrium will be: 1) q1 = 45 and q2 = 0. 2) q1 = 30 and q2 = 30. 3) q1 = 45...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT