In: Math
Treatment | I | II | III | P-totals | |
Person | |||||
A | 7 | 7 | 8 | P= | |
B | 5 | 3 | 3 | P= | |
C | 1 | 1 | 3 | P= | |
D | 3 | 1 | 2 | P= | |
M= | M= | M= | N= | ||
T= | T= | T= | G= | ||
SS= | SS= | SS= | Ex2= |
a) From the given data
Person | ||||||||
Treatment | A | B | C | D | Ti. | SS | Ti.^2/n | Mean |
I | 7 | 5 | 1 | 3 | 16 | 20 | 64 | 4 |
II | 7 | 3 | 1 | 1 | 12 | 24 | 36 | 3 |
III | 8 | 3 | 3 | 2 | 16 | 22 | 64 | 4 |
Total Pj | 22 | 11 | 5 | 6 | 44 | 66 | 164 | |
Pj^2 /k | 161.3333333 | 40.33333 | 8.333333 | 12 | 222 |
Anova Table | Alpha = | 0.05 | ||||
Source | df | SS | MSS | Var. Ratio F | F-critic | P-Value |
B/w groups | 2 | 2.666667 | 1.333333 | 1.5 | 5.143253 | 0.296296 |
Within Group | 9 | 66 | ||||
i) B/w Subject | 3 | 60.66667 | ||||
ii) Error | 6 | 5.333333 | 0.888889 | |||
Total: | 11 | 68.66667 |
Since P-value > alpha 0.05 so we accept H0
Thus we conclude that there is no significance difference among the 3 treatments
b)