Question

In: Physics

Question text Consider a long solenoid of length = 1m, radius = 3.0 cm and 800...

Question text

Consider a long solenoid of length = 1m, radius = 3.0 cm and 800 turns/m. If the rate of change of current is 40 A/s what voltage is induced?

Select one:

a. 11 mV

b. 0.6 mV

c. 91 mV

d. 70 mV

e. 0.4 mV

Solutions

Expert Solution

Magnetic field in the solenoid, B = o * n * I
Where o is the vacuum permeability, n is the number of turns per unit length and I is the current

Magnetic flux, = N * B * A
Where n is the number of turns and A is the area.
N = n * L, where L is the length of the solenoid.
N = 800 * 1 = 800
A = R2, wher R is the radius of the solenoid.

= N * [o * n * I] * R2
Voltage induced, V = d/dt
= N * [o * n * dI/dt] * R2
Substituting values,
V = 800 * [4 * 10-7 * 800 * 40] * [ * (3 * 10-2)2]
= 800 * [4.02 * 10-2] * [2.83 * 10-3]
= 90.96 * 10-3 V
= 91 mV


Related Solutions

A solenoid of radius 3.5 cm has 800 turns and a length of 25 cm. (a)...
A solenoid of radius 3.5 cm has 800 turns and a length of 25 cm. (a) Find its inductance. mH (b) Find the rate at which current must change through it to produce an emf of 90 mV. (Enter the magnitude.) A/s
A 320 turn solenoid with a length of 19.0 cm and a radius of 1.20 cm...
A 320 turn solenoid with a length of 19.0 cm and a radius of 1.20 cm carries a current of 1.90 A. A second coil of four turns is wrapped tightly around this solenoid, so it can be considered to have the same radius as the solenoid. The current in the 320 turn solenoid increases steadily to 5.00 A in 0.900 s. (a) Use Ampere's law to calculate the initial magnetic field in the middle of the 320 turn solenoid....
A solenoid of radius 3 cm, 2900 turns, and a length of 8 cm is carrying...
A solenoid of radius 3 cm, 2900 turns, and a length of 8 cm is carrying a current that alternates according to the formula I(t)=I0cos(2πft) where the peak current is I0=1200 mA and the frequency is f=100 Hz. A.) What is the RMS EMF induced by the fluctuating current? B.) What is the RMS strength of the electric field that corresponds to the induced EMF? C.) What is the RMS electric field strength at a distance 6 cm from the...
A coil of 15 turns and radius 10.0 cm surrounds a long solenoid of radius 2.10...
A coil of 15 turns and radius 10.0 cm surrounds a long solenoid of radius 2.10 cm and 1.00  103 turns/meter (see figure below). The current in the solenoid changes as I = 4.00 sin 120 t, where I is in amperes and t is in seconds. Find the induced emf (in volts) in the 15-turn coil as a function of time. = ?
A 510-turn solenoid has a radius of 8.00 mm and an overall length of 14.0 cm....
A 510-turn solenoid has a radius of 8.00 mm and an overall length of 14.0 cm. (a) What is its inductance? (b) If the solenoid is connected in series with a 2.50-?(ohm electrical symbol) resistor and a battery, what is the time constant of the circuit?
2. A solenoid that is 95 cm long and radius of 2 em and winding of 1200 turns
2. A solenoid that is 95 cm long and radius of 2 em and winding of 1200 turns; it carries a current of 3.6 A. Calculate the magnitude of the magnetic field inside the solenoid.3. A solenoid 1.3 m long and 2.6 cm in diameter carries a current of 18 A. The magnetic field inside the solenoid is 23mT. Find the length of the solenoid.
A very long solenoid with a circular cross section and radius r1= 1.40 cm with ns=...
A very long solenoid with a circular cross section and radius r1= 1.40 cm with ns= 300 turns/cm lies inside a short coil of radius r2= 4.40 cm and Nc= 30 turns. If the current in the solenoid is ramped at a constant rate from zero to Is= 2.10 A over a time interval of 75.0 ms, what is the magnitude of the emf in the outer coil while the current in the solenoid is changing? What is the mutual...
A very long solenoid with a circular cross section and radius r1= 1.50 cm with ns=...
A very long solenoid with a circular cross section and radius r1= 1.50 cm with ns= 100 turns/cm lies inside a short coil of radius r2= 3.70 cm and Nc= 33 turns. If the current in the solenoid is ramped at a constant rate from zero to Is= 2.30 A over a time interval of 72.0 ms, what is the magnitude of the emf in the outer coil while the current in the solenoid is changing? What is the mutual...
A solenoid has N=1000 turns, length l=20 cm, and radius r=1.0 cm. (a) What is its...
A solenoid has N=1000 turns, length l=20 cm, and radius r=1.0 cm. (a) What is its self-inductance? (b) You are ramping up the current from 0 to 1.0 A in 1.0 s. How much voltage do you have to apply? (c) Calculate the energy stored in the inductor when the current is 1.0 A.
A long solenoid with 1.65 103 turns per meter and radius 2.00 cm carries an oscillating...
A long solenoid with 1.65 103 turns per meter and radius 2.00 cm carries an oscillating current I = 7.00 sin 120?t, where I is in amperes and t is in seconds. (a) What is the electric field induced at a radius r = 1.00 cm from the axis of the solenoid? (Use the following as necessary: t. Let E be measured in millivolts/meter and t be measured in seconds.)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT