Question

In: Physics

A solenoid of radius 3 cm, 2900 turns, and a length of 8 cm is carrying...

A solenoid of radius 3 cm, 2900 turns, and a length of 8 cm is carrying a current that alternates according to the formula

I(t)=I0cos(2πft)

where the peak current is I0=1200 mA and the frequency is f=100 Hz.

A.) What is the RMS EMF induced by the fluctuating current? B.) What is the RMS strength of the electric field that corresponds to the induced EMF? C.) What is the RMS electric field strength at a distance 6 cm from the center of the solenoid?

Solutions

Expert Solution



Related Solutions

A solenoid of radius 3.5 cm has 800 turns and a length of 25 cm. (a)...
A solenoid of radius 3.5 cm has 800 turns and a length of 25 cm. (a) Find its inductance. mH (b) Find the rate at which current must change through it to produce an emf of 90 mV. (Enter the magnitude.) A/s
A solenoid has N=1000 turns, length l=20 cm, and radius r=1.0 cm. (a) What is its...
A solenoid has N=1000 turns, length l=20 cm, and radius r=1.0 cm. (a) What is its self-inductance? (b) You are ramping up the current from 0 to 1.0 A in 1.0 s. How much voltage do you have to apply? (c) Calculate the energy stored in the inductor when the current is 1.0 A.
A 320 turn solenoid with a length of 19.0 cm and a radius of 1.20 cm...
A 320 turn solenoid with a length of 19.0 cm and a radius of 1.20 cm carries a current of 1.90 A. A second coil of four turns is wrapped tightly around this solenoid, so it can be considered to have the same radius as the solenoid. The current in the 320 turn solenoid increases steadily to 5.00 A in 0.900 s. (a) Use Ampere's law to calculate the initial magnetic field in the middle of the 320 turn solenoid....
A coil of 15 turns and radius 10.0 cm surrounds a long solenoid of radius 2.10...
A coil of 15 turns and radius 10.0 cm surrounds a long solenoid of radius 2.10 cm and 1.00  103 turns/meter (see figure below). The current in the solenoid changes as I = 4.00 sin 120 t, where I is in amperes and t is in seconds. Find the induced emf (in volts) in the 15-turn coil as a function of time. = ?
Given a solenoid that has N1 turns, a length L1 and a radius r1 where a...
Given a solenoid that has N1 turns, a length L1 and a radius r1 where a current running through is increasing from I1 to I2 in t seconds. A second solenoid coaxial with the first has N2 turns, a length L2, a radius r2 and a resistance R. Note that both solenoids are not connected, meaning the second is not connected to a source. Give the expression of: a) The initial magnetic field the first solenoid creates inside its coil...
2. A solenoid that is 95 cm long and radius of 2 em and winding of 1200 turns
2. A solenoid that is 95 cm long and radius of 2 em and winding of 1200 turns; it carries a current of 3.6 A. Calculate the magnitude of the magnetic field inside the solenoid.3. A solenoid 1.3 m long and 2.6 cm in diameter carries a current of 18 A. The magnetic field inside the solenoid is 23mT. Find the length of the solenoid.
Problem_02 Given a solenoid that has N1 turns, a length L1 and a radius r1 where...
Problem_02 Given a solenoid that has N1 turns, a length L1 and a radius r1 where a current running through is increasing from I1 to I2 in t seconds. A second solenoid coaxial with the first has N2 turns, a length L2, a radius r2 and a resistance R. Note that both solenoids are not connected, meaning the second is not connected to a source. Give the expression of: 1) The average emf induced in the loop 2) The average...
A long solenoid with 1.65 103 turns per meter and radius 2.00 cm carries an oscillating...
A long solenoid with 1.65 103 turns per meter and radius 2.00 cm carries an oscillating current I = 7.00 sin 120?t, where I is in amperes and t is in seconds. (a) What is the electric field induced at a radius r = 1.00 cm from the axis of the solenoid? (Use the following as necessary: t. Let E be measured in millivolts/meter and t be measured in seconds.)
A long, thin solenoid has 600 turns per meter and radius 2.6 cm. The current in...
A long, thin solenoid has 600 turns per meter and radius 2.6 cm. The current in the solenoid is increasing at a uniform rate dI/dt. The induced electric eld at a point near the center of the solenoid and 3.80 cm from its axis is 8.00 10 -5 V/m. Calculate dI/dt
A long solenoid with 1.65 103 turns per meter and radius 2.00 cm carries an oscillating...
A long solenoid with 1.65 103 turns per meter and radius 2.00 cm carries an oscillating current I = 6.00 sin 120πt, where I is in amperes and t is in seconds. (a) What is the electric field induced at a radius r = 1.00 cm from the axis of the solenoid? (Use the following as necessary: t. Let E be measured in millivolts/meter and t be measured in seconds.) E = (b) What is the direction of this electric...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT