Question

In: Physics

A toy car with a mass of 1 kg starts from rest at the top of a ramp at point A.

A toy car with a mass of 1 kg starts from rest at the top of a ramp at point A. The toy car is released from rest, rolls 2.0 meters down the ramp, then another 3.0 meters across the floor to point B where its speed is measured to be 4.24 m/s. The air exerts a resistance force of 2.0 N on the car as it moves from A to B. Find the initial height of the car at point A. Assume g = 10 m/s^2.

Note: The user has mastered the concept of the conservation of energy and is proficient in solving problems where energy is conserved but is new to solving energy problems involving work done by non-conservative forces. Explain how work is related to the total mechanical energy of a system, then use this information to set up and solve the problem above.

Solutions

Expert Solution

Step 1

Given :

mass of toy car = 1 kg

g = 10 m/s2

Force = 2 N

rolling distance = 2 m

speed = 4.24 m/s

Displacement = 3 m + 2 m

                      = 5 m

Step 2

We need to find out the initial height of the car at point A.

By conservation of energy, we can say that work done by air resistance is equal to the sum of kinetic energy and potential energy: ∆P.E + ∆K.E = work done">P.E + K.E = work done∆P.E + ∆K.E = work done

                                     (0 - mgh ) + ( 1/2 mv2 - 0) = f x s ,and

Work Done = Force x Displacement

substituting the values :

therefore , [1/2 (1) x (4.24)2 - 0 ] + [ 0 - (1) (10) h ] = 10

8.98 = 10+10 h

h = 0.898 + 1

h = 1.898 m

 

Step 3

Work done is equal to the change in mechanical energy.


h = 1.898 m

Related Solutions

A hoop with a mass of 3.15 kg starts from rest at the top of a...
A hoop with a mass of 3.15 kg starts from rest at the top of a ramp. The ramp is 5.0 m long and 2.1 m high. What is the rotational kinetic energy of the hoop after it has rolled without slipping to the bottom? 16 J 32 J 22 J 78 J
An object of mass m1 = 0.435 kg starts from rest at point  and slides down an...
An object of mass m1 = 0.435 kg starts from rest at point  and slides down an incline surface that makes an angle θ = 36.0° with the horizontal as shown. The coefficient of kinetic friction between the object and the incline surface is 0.395. After sliding down a distance d = 5.60 m, it makes a perfectly inelastic collision with an object of mass m2 = 0.650 kg at point . a) Find the speed of m1 at point  just before...
An object of mass m1 = 0.415 kg starts from rest at point  and slides down an...
An object of mass m1 = 0.415 kg starts from rest at point  and slides down an incline surface that makes an angle θ = 36.0° with the horizontal as shown. The coefficient of kinetic friction between the object and the incline surface is 0.455. After sliding down a distance d = 5.80 m, it makes a perfectly inelastic collision with an object of mass m2 = 0.645 kg at point . (a) Find the speed of m1 at point  just before...
A skier with a mass of 75kg starts from rest at the top of a slope...
A skier with a mass of 75kg starts from rest at the top of a slope which is 110m tall and skis to the bottom. Hint: you must use conservation of energy to solve both parts of this problem. a. What is the skier’s speed at the bottom of the slope if there is no friction? b. If the speed of the skier at the bottom of the slope is actually 20m/s, how much work is done by friction?
A ski jumper starts from rest from point A at the top of a hill that...
A ski jumper starts from rest from point A at the top of a hill that is a height h1 above point B at the bottom of the hill. The skier and skis have a combined mass of 80 kg. The skier slides down the hill and then up a ramp and is launched into the air at point C that is a height of 10m above the ground. The skier reaches point C traveling at 42m/s. (a) Is the...
A 35.0-kg crate is initially at rest at the top of a ramp that is inclined...
A 35.0-kg crate is initially at rest at the top of a ramp that is inclined at an angle θ = 30◦ above the horizontal. You release the crate and it slides 1.25 m down the ramp before it hits a spring attached to the bottom of the ramp. The coefficient of kinetic friction between the crate and the ramp is 0.500 and the constant of the spring is k = 6000 N/m. What is the net impulse exerted on...
A block of mass m begins at rest at the top of a ramp at elevation...
A block of mass m begins at rest at the top of a ramp at elevation h with whatever PE is associated with that height. The block slides down the ramp over a distance d until it reaches the bottom of the ramp. How much of its original total energy (in J) survives as KE when it reaches the ground? (In other words, the acceleration is not zero like it was in lab and friction does not remove 100% of...
A skier of mass 75kg starts from rest at the top of a friction less incline...
A skier of mass 75kg starts from rest at the top of a friction less incline that is 20.0 m in height. As soon as she touches the bottom of the incline, she encounters a horizontal surface that is 1000 m long and the skier eventually comes to rest. The coefficient of kinetic friction between skier and snow is 0.205. Find the distance the skier covers before coming to rest. Show all work.
Beginning from rest, an object of mass 200 kg slides down a 9-m-long ramp. The ramp...
Beginning from rest, an object of mass 200 kg slides down a 9-m-long ramp. The ramp is inclined at an angle of 20o from the horizontal. Air resistance and friction between the object and the ramp are negligible. Let g = 9.81 m/s2. Determine the kinetic energy of the object, in kJ, and the velocity of the object, in m/s, at the bottom of the ramp.
A block of mass m1 = 1 kg is initially at rest at the top of...
A block of mass m1 = 1 kg is initially at rest at the top of an h1 = 1 meter high ramp, see Fig. 2 below. It slides down the frictionless ramp and collides elastically with a block of unknown mass m2, which is initially at rest. After colliding with m2, mass m1 recoils and achieves a maximum height of only h2 = 0.33 m going back up the frictionless ramp. (HINT: Solving each part in sequence will guide...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT