Question

In: Physics

A ski jumper starts from rest from point A at the top of a hill that...

A ski jumper starts from rest from point A at the top of a hill that is a height h1 above point B at the bottom of the hill. The skier and skis have a combined mass of 80 kg. The skier slides down the hill and then up a ramp and is launched into the air at point C that is a height of 10m above the ground. The skier reaches point C traveling at 42m/s.

(a) Is the work done by the gravitational force on the skier as the skier slides from point A to point B positive or negative? Justify your answer.

(b) The skier leaves the ramp at point C traveling at an angle of 25° above the horizontal. Calculate the kinetic energy of the skier at the highest point in the skier's trajectory.

(c)

i. Calculate the horizontal distance from the point directly below C to where the skier lands.

ii. If the angle is increased to 35°, will the new horizontal distance traveled by the skier be greater than, less than, or equal to the answer from part (c)(i)? Justify your answer.

(d) After landing, the skier slides along horizontal ground before coming to a stop. The skier’s initial speed on the ground is the horizontal component of the skier’s velocity when the skier left the ramp. The average coefficient of friction μ is given as a function of the distance x moved by the skier by the equation μ=0.20x. Calculate the distance the skier moves between landing and coming to a stop.

Solutions

Expert Solution


Related Solutions

A skier starts from rest at the top of a hill that is inclined at 10.8°...
A skier starts from rest at the top of a hill that is inclined at 10.8° with respect to the horizontal. The hillside is 245 m long, and the coefficient of friction between snow and skis is 0.0750. At the bottom of the hill, the snow is level and the coefficient of friction is unchanged. How far does the skier glide along the horizontal portion of the snow before coming to rest?
A skier starts from rest at the top of a hill that is inclined at 10.9°...
A skier starts from rest at the top of a hill that is inclined at 10.9° with respect to the horizontal. The hillside is 190 m long, and the coefficient of friction between snow and skis is 0.0750. At the bottom of the hill, the snow is level and the coefficient of friction is unchanged. How far does the skier glide along the horizontal portion of the snow before coming to rest?
A ski jumper starts from rest 54.0 m above the ground on a frictionless track and...
A ski jumper starts from rest 54.0 m above the ground on a frictionless track and flies off the track at an angle of 45.0° above the horizontal and at a height of 19.0 m above the ground. Neglect air resistance. (a) What is her speed when she leaves the track? m/s (b) What is the maximum altitude she attains after leaving the track? m (c) Where does she land relative to the end of the track? m
A toy car with a mass of 1 kg starts from rest at the top of a ramp at point A.
A toy car with a mass of 1 kg starts from rest at the top of a ramp at point A. The toy car is released from rest, rolls 2.0 meters down the ramp, then another 3.0 meters across the floor to point B where its speed is measured to be 4.24 m/s. The air exerts a resistance force of 2.0 N on the car as it moves from A to B. Find the initial height of the car at...
After leaving the end of a ski ramp, a ski jumper lands downhill at a point...
After leaving the end of a ski ramp, a ski jumper lands downhill at a point that is displaced 60.9 m horizontally from the end of the ramp. His velocity, just before landing, is 25.2 m/s and points in a direction 31.4 ° below the horizontal. Neglecting air resistance and any lift that he experiences while airborne, find (a) the magnitude and (b) the direction of his initial velocity when he left the end of the ramp.
After leaving the end of a ski ramp, a ski jumper lands downhill at a point...
After leaving the end of a ski ramp, a ski jumper lands downhill at a point that is displaced 50.0 m horizontally from the end of the ramp. His velocity, just before landing, is 24.0 m/s and points in a direction 34.1 ° below the horizontal. Neglecting air resistance and any lift that he experiences while airborne, find (a) the magnitude and (b) the direction of his initial velocity when he left the end of the ramp.
A jumper with a mass of 90 kg is held at rest at the top of...
A jumper with a mass of 90 kg is held at rest at the top of a 100 m high ramp. The jumper is then released to water. (The gravitational field strength is 9.8 m/s2 ) Calculate the change in gravitational potential energy of the jumper when he reaches the ground (the point Y) in kilojoule. How would you calculate the magnitude of kinetic energy of the jumper at point Y? (Assume no energy is transferred or lost during). A...
A hoop with a mass of 3.15 kg starts from rest at the top of a...
A hoop with a mass of 3.15 kg starts from rest at the top of a ramp. The ramp is 5.0 m long and 2.1 m high. What is the rotational kinetic energy of the hoop after it has rolled without slipping to the bottom? 16 J 32 J 22 J 78 J
A skier with a mass of 75kg starts from rest at the top of a slope...
A skier with a mass of 75kg starts from rest at the top of a slope which is 110m tall and skis to the bottom. Hint: you must use conservation of energy to solve both parts of this problem. a. What is the skier’s speed at the bottom of the slope if there is no friction? b. If the speed of the skier at the bottom of the slope is actually 20m/s, how much work is done by friction?
A 12,000 N car starts from rest and rolls down a hill from a height of...
A 12,000 N car starts from rest and rolls down a hill from a height of 10.0 m (see figure). It then moves across a level surface and collides with a light spring-loaded guardrail. (a) Neglecting any losses due to friction, and ignoring the rotational kinetic energy of the wheels, find the maximum distance the spring is compressed. Assume a spring constant of 1.2  106 N/m. ? m (b) Calculate the maximum acceleration of the car after contact with the spring,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT