In: Statistics and Probability
Consider the following time series.
t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Yt | 83 | 61 | 45 | 36 | 29 | 28 | 36 |
b. Develop the quadratic trend equation for the time series. Enter negative value as negative number.(to 3 decimals)
Tt = ______ + _______t + ________ t2
c. What is the forecast for t = 8?
b)
Following is the Quardratic model:
Regression Analysis | |||||||
R² | 0.999 | ||||||
Adjusted R² | 0.998 | n | 7 | ||||
R | 0.999 | k | 2 | ||||
Std. Error | 0.838 | Dep. Var. | Yt | ||||
ANOVA table | |||||||
Source | SS | df | MS | F | p-value | ||
Regression | 2,338.0476 | 2 | 1,169.0238 | 1664.37 | 1.44E-06 | ||
Residual | 2.8095 | 4 | 0.7024 | ||||
Total | 2,340.8571 | 6 | |||||
Regression output | confidence interval | ||||||
variables | coefficients | std. error | t (df=4) | p-value | 95% lower | 95% upper | |
Intercept | 107.4286 | ||||||
t | -28.1310 | 0.7485 | -37.584 | 2.99E-06 | -30.2091 | -26.0528 | |
t² | 2.5119 | 0.0914 | 27.470 | 1.04E-05 | 2.2580 | 2.7658 | |
Predicted values for: Yt | |||||||
95% Confidence Interval | 95% Prediction Interval | ||||||
t | t² | Predicted | lower | upper | lower | upper | Leverage |
8 | 64 | 43.1 | 39.5 | 46.8 | 38.8 | 47.5 | 2.429 |
The required model is:
c)
The forecasted value is