In: Statistics and Probability
Consider the following time series:
Period 1, 2, 3, 4, 5, 6, 7, 8
Demand 15, 17, 14, 7, 10, 12, 7, 5
A. using a trend projection, forecast the demand for period 9
b. calculate the MAD for this forecast
SHOW ALL WORK! DO NOT USE EXCEL OR PHSTAT!
X | Y | (x-x̅)² | (y-ȳ)² | (x-x̅)(y-ȳ) |
1 | 15 | 12.25 | 17.0 | -14.4 |
2 | 17 | 6.25 | 37.5 | -15.3 |
3 | 14 | 2.25 | 9.8 | -4.7 |
4 | 7 | 0.25 | 15.0 | 1.9 |
5 | 10 | 0.25 | 0.8 | -0.4 |
6 | 12 | 2.25 | 1.3 | 1.7 |
7 | 7 | 6.3 | 15.0 | -9.7 |
8 | 5 | 12.25 | 34.5 | -20.6 |
ΣX | ΣY | Σ(x-x̅)² | Σ(y-ȳ)² | Σ(x-x̅)(y-ȳ) | |
total sum | 36 | 87 | 42.000 | 130.9 | -61.5 |
mean | 4.50 | 10.88 | SSxx | SSyy | SSxy |
sample size , n = 8
here, x̅ = 4.50 , ȳ
= 10.875
SSxx = Σ(x-x̅)² = 42.00
SSxy= Σ(x-x̅)(y-ȳ) = -61.5
slope , ß1 = SSxy/SSxx =
-1.4643
intercept, ß0 = y̅-ß1* x̄ =
17.4643
so, trend equation is Ŷ =
17.46 + -1.46 *x
a)
period =9
Ŷ = 17.46 + -1.46 *9=4.3
b)
period, X | demand | forcast | absolute error, demad-forcast | |||
1 | 15 | 16.00 | 1.0000 | |||
2 | 17 | 14.54 | 2.4643 | |||
3 | 14 | 13.07 | 0.9286 | |||
4 | 7 | 11.61 | 4.6071 | |||
5 | 10 | 10.14 | 0.1429 | |||
6 | 12 | 8.68 | 3.321 | |||
7 | 7 | 7.21 | 0.214 | |||
8 | 5 | 5.75 | 0.750 |
MAD = Σ|demand -forecast|/n= 13.429/8 = 1.679