Question

In: Physics

Blocks with masses of 3.0 kg, 4.0 kg, and 5.0 kg are lined up in a...

Blocks with masses of 3.0 kg, 4.0 kg, and 5.0 kg are lined up in a row on a frictionless table. All three are pushed forward by a 19N force applied to the 3.0 kg block.

a) How much force does the 4.0 kg block exert on the 5.0 kg block?

b)How much force does the 4.0 kg block exert on the 3.0 kg block?

please explain! thanks!

Solutions

Expert Solution

Net mass m =   m1 + m2 + m3

= 3.0   + 4.0   + 5.0

                        = 12 kg

   net acceleration a =   F / m   =   19.0 / 12.0

                                                   = 1.583 m/s2

   a.   Force exerted on 5 kg block   F =   m3 * a

                                                               = 5.0 * 1.583

                                                               = 7.915 N

b.   Force exerted on 3 kg block   F =   (m2+ m3) * a

                                                               =   (4.0 + 5.0) * 1.583

                                                               =   14.247 N


Related Solutions

There are two discs of masses 3.0 kg and 2.0 kg and radii 10 cm and...
There are two discs of masses 3.0 kg and 2.0 kg and radii 10 cm and 5 cm, respectively. The discs are rotating about their respective center of masses with angular speeds 200 rpm and 300 rpm. The discs are brought together into contact face-to-face with their axes of rotation coincident. a) What is the angular speed of the two-disc system? b) What are the kinetic energies of the discs when they were apart? Denote them as K1 and K2....
Two masses, 4.0 kg and 6.0 kg, are connected by a "massless" rope over a "frictionless"...
Two masses, 4.0 kg and 6.0 kg, are connected by a "massless" rope over a "frictionless" pulley as pictured in the diagram. The ramp is inclined at 30.0 degrees and the coefficient of kinetic friction on the ramp is 0.18. a) determine acceleration of the system once it begins to slide b) determine tension in the rope. Show all work
A pendulum consists of a ball of mass 3.0 kg on a string of length 4.0...
A pendulum consists of a ball of mass 3.0 kg on a string of length 4.0 m. The ball is pulled back untilits center has risen to a height of 0.80 m. The ball is released such that it strikes a 1.0 kg block at thebottom of its swing. The block comes to a rest after traveling 2.0 m across a surface withμk= 0.15.What is the speed of the ball right after the collision? Is the collision elastic?
You have two blocks, with respective masses of 8 kg and 12 kg sitting next to...
You have two blocks, with respective masses of 8 kg and 12 kg sitting next to each other on a table. You decide to move them both together, and push on the 8 kg block with a net force of 120 N such that it pushes the 12 kg block along with it. a. Find the acceleration for both blocks. b. Will both blocks feel the same net force? Explain. c. Draw a force diagram on the 8 kg block,...
An Atwood's machine consists of blocks of masses m1 = 9.1 kg and m2 = 20.0...
An Atwood's machine consists of blocks of masses m1 = 9.1 kg and m2 = 20.0 kg attached by a cord running over a pulley as in the figure below. The pulley is a solid cylinder with mass M = 8.00 kg and radius r = 0.200 m. The block of mass m2 is allowed to drop, and the cord turns the pulley without slipping. a) Why must tension T2 be greater than T1 B) what is the acceleration of...
A 2 kg disk traveling at 3.0 m/s strikes a 1.0 kg stick of length 4.0...
A 2 kg disk traveling at 3.0 m/s strikes a 1.0 kg stick of length 4.0 m, that is lying flat on nearly frictionless ice. The disk strikes at the end point of the stick at a distance r=2.0 m from the stick's center. Assume the collision is inelastic and the disk adheres to the stick.The moment of inertia of the stick about its center of mass is 1.33kg*m^2. a) Does the disk have initial linear momentum? b) Does the...
A 3.1 kg rod of length 5.1 m has at opposite ends point masses of 4.0...
A 3.1 kg rod of length 5.1 m has at opposite ends point masses of 4.0 kg and 6.0 kg. a)Will the center of mass of this system be nearer to the 4.0-kg mass, nearer to the 6.0-kgmass, or at the center of the rod?    b) Where is the center of mass of the system? (F-net=M[Vcm/t] xCM= (summation of all mass by distance)/system of mass Diagram please, not fully understand the system. getting 5.03m
Two blocks of masses m1= 2.00 kgand m2= 4.10 kg are released from rest at a...
Two blocks of masses m1= 2.00 kgand m2= 4.10 kg are released from rest at a height of h= 4.40 m on a frictionless track. When they meet on the level portion of the track, they undergo a head-on, elastic collision. Determine the maximum heights to which m1 and m2 rise on the curved portion of the track after the collision.
Three blocks of unknown mass m1, m2=2.0 kg, and m3 = 3.0 kg are on a frictionless horizontal surface as shown on the figure below.
Three blocks of unknown mass m1, m2=2.0 kg, and m3 = 3.0 kg are on a frictionless horizontal surface as shown on the figure below. The blocks are connected by ideal, massless strings. A force FL=11 N is applied to the left block and is directed to the left. A force FR=33 N is applied to the right block, and is directed to the right. The tension T12 in the string between m1 and m2 is 13 N and the...
Three odd-shaped blocks of chocolate have the following masses and center-of-mass coordinates: (1) 0.310 kg ,...
Three odd-shaped blocks of chocolate have the following masses and center-of-mass coordinates: (1) 0.310 kg , ( 0.200 m , 0.310 m ); (2) 0.410 kg , ( 0.110 m , -0.380 m );(3) 0.210 kg , ( -0.290 m , 0.630 m ). Part A Find the x-coordinate of the center of mass of the system of three chocolate blocks. Part B Find the y-coordinate of the center of mass of the system of three chocolate blocks.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT