Question

In: Physics

An Atwood's machine consists of blocks of masses m1 = 9.1 kg and m2 = 20.0...

An Atwood's machine consists of blocks of masses m1 = 9.1 kg and m2 = 20.0 kg attached by a cord running over a pulley as in the figure below. The pulley is a solid cylinder with mass M = 8.00 kg and radius r = 0.200 m. The block of mass m2 is allowed to drop, and the cord turns the pulley without slipping.

a) Why must tension T2 be greater than T1

B) what is the acceleration of the system assuming there is no friction

C) Tension in T1=

Tension in T2=

Solutions

Expert Solution

Given that mass m_1 = 9.1 kg , mass m_2 = 20.0 kg

mass of the solid cyllinder is M = 8.00 kg , radius r = 0.200m

  a ) Since the mass m_2 > m_1 then the tension T_2 is greater than the tens ion T_1

    Apply Newtons law for each mass then

    for mass m_1

                      T_1 - m_1 *g = m_1 a

                                  T_1 = m_1 g + m_1 a   --------------(1)

    for mass m_2

                          m_2 g - T_2   = m_2 a

                                      T_2 = m_2 g - m_2 a     -------------(2)

    From the pully

                              T_2 *r- T_1 *r = I ?

                               T_2 *r- T_1 *r = I a / r

                                       T_2 - T_1 = I a/ r^2
                                                    T_ 2 - T_1 = (M r^2 / 2)a/ r^2


                                        T_2 - T_ 1 = ( M/2 )a   --------------- (3)

                         m_2 g -m_a - m_ 1g - m_ 1a = M a /2

                                    a = ( m_2 - m_1 )g / ( m_1 + m_2 + M /2)      

                                        =- ----------m/ s^2   

               

substitute the a value in the eqation (1) then we getT_1 =---------- N

  

substitute the a value in the eqation (2) then we get T_ 2=---------- N


Related Solutions

Two blocks of masses m1= 2.00 kgand m2= 4.10 kg are released from rest at a...
Two blocks of masses m1= 2.00 kgand m2= 4.10 kg are released from rest at a height of h= 4.40 m on a frictionless track. When they meet on the level portion of the track, they undergo a head-on, elastic collision. Determine the maximum heights to which m1 and m2 rise on the curved portion of the track after the collision.
1. Suppose we have two blocks of masses m1 and m2. The block with mass m1...
1. Suppose we have two blocks of masses m1 and m2. The block with mass m1 is moving towards block m2 at speed v. After the collision, we measure the total kinetic energy and find that the total kinetic energy after the collision is m2/(m1+m2) less than the kinetic energy before the collision. Find the final speeds of the two blocks. What type of collision is this? 2. Explain, in words, how we know that a freely spinning asteroid in...
Problem: Two blocks for masses m1 and m2 are stacked on top of each other and...
Problem: Two blocks for masses m1 and m2 are stacked on top of each other and placed on a frictionless, horizontal surface. The surfaces between two blocks is rough and has a coeff of static friction, us. A horiz push of magnitude, F, directed to the right is applied on the bottom block. A. Derive an expression for the maximum horizontal force, F, that can be applied on the bottom block, m1, before the top block m2, begins to slip....
Two objects with masses of m1 = 3.20 kg and m2 = 7.90 kg are connected...
Two objects with masses of m1 = 3.20 kg and m2 = 7.90 kg are connected by a light string that passes over a frictionless pulley, as in the figure below. A string passes over a pulley which is suspended from a horizontal surface. A circular object of mass m1 and a rectangular object of m2 are, respectively, attached to the left and right ends of the string. (a) Determine the tension in the string. N (b) Determine the acceleration...
two masses m1 = 4.70 kg and m2 which has a mass 50.0% that of m1,...
two masses m1 = 4.70 kg and m2 which has a mass 50.0% that of m1, are attached to a cord of negligible mass which passes over a frictionless pulley also of negligible mass. If m1 and m2 start from rest, after they have each traveled a distance h = 2.90 m, use energy content to determine the following. (a) speed v of the masses (b) magnitude of the tension T in the cord
The two blocks, m1 = 2.6 kg and m2 = 4.2, in the figure below are...
The two blocks, m1 = 2.6 kg and m2 = 4.2, in the figure below are connected by a massless rope that passes over a pulley. The pulley is 12 cm in diameter and has a mass of 2.0 kg. As the pulley turns, friction at the axle exerts a torque of magnitude 0.55 N · m. If the blocks are released from rest, how long does it take the 4.2 kg block to reach the floor from a height...
Two objects with masses m1 = 37 kg and m2 = 39 kg are moving toward...
Two objects with masses m1 = 37 kg and m2 = 39 kg are moving toward each other with speeds V1 = 14 m/s and V2 = 18 m/s. They collide and stick together. Find their final: speed:
Three blocks of unknown mass m1 = 1.0 kg, m2 = 2.0 kg, and m3 =...
Three blocks of unknown mass m1 = 1.0 kg, m2 = 2.0 kg, and m3 = 3.0 kg are on a frictionless horizontal surface as shown on the figure below. The blocks are connected by ideal, massless strings. A force FL = 12 N is applied to the left block and is directed to the left. A force FR = 33 N is applied to the right block, and is directed to the right. Find the tensions T12 and T23,...
Imagine two carts with different masses colliding (m1 = 2.0 kg, m2 = 1.0 kg). If...
Imagine two carts with different masses colliding (m1 = 2.0 kg, m2 = 1.0 kg). If cart one is initially moving at 10 m/s and the other cart is stationary, calculate the final speed of each mass after they have a 100% elastic collision. Please show all work!
A. You have an Atwood's Pulley with the two hanging masses being m1=22 kg, m2=49 kg,...
A. You have an Atwood's Pulley with the two hanging masses being m1=22 kg, m2=49 kg, and the pulley having moment of inertia I=69 kg.m2 and radius R=3.4 m. Use g=9.78 m/s/s. When the system is in its free motion, calculate the magnitude of the torque , in units of N.m, on the pulley. B. You have an Atwood's Pulley with the two hanging masses being m1=32 kg, m2=52 kg, and the pulley having moment of inertia I=58.4 kg.m2 and...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT