Question

In: Physics

A 2 kg disk traveling at 3.0 m/s strikes a 1.0 kg stick of length 4.0...

A 2 kg disk traveling at 3.0 m/s strikes a 1.0 kg stick of length 4.0 m, that is lying flat on nearly frictionless ice. The disk strikes at the end point of the stick at a distance r=2.0 m from the stick's center. Assume the collision is inelastic and the disk adheres to the stick.The moment of inertia of the stick about its center of mass is 1.33kg*m^2.

a) Does the disk have initial linear momentum?

b) Does the disk have initial angular momentum? If so, where is the axis of rotation?

c) Does the disk have final linear momentum?

d) Does the disk have final angular momentum?

e) If ΔK = 0 for the system, would this collision make any sound?

Solutions

Expert Solution

a) The disk does have an initial linear momentum.

The disc is moving straight with a velocity v. SO, it will have an initial linear mementum ( p = mass*velocity)

b) The disc is not undergoing any rotation motion. So, it doesnot have any angular momentum initially.

c) The disc hits on the rod at one end and moves along with the rod.

So, the motion of the system will involved a curved path.

Since the rod is not attached anywhere, the motion of the system will be a combination of linear and circular motion.

So, it will have a final angular momentum.

d) Since the disc hits the rod at one end, the rod will follow a curved path involving a rotation and will have an angular momentum.

e) The collision is happening on a flat surface. So, there is no change in potential energy.

SO, the change in kinetic energy = 0 means that there is no energy lost during collision.

The collison is elastic.

The energy lost during a collision is converted into heat and sound. Since there is no energy lost, there will be no sound.

So, the answers are

a = yes

b = no

c = yes

d = yes

e = no


Related Solutions

A 3.0 kg cart moving to the right with a speed of 1.0 m/s has a...
A 3.0 kg cart moving to the right with a speed of 1.0 m/s has a head-on collision with a 5.0 kg cart that is initially moving to the left with a speed of 2.0 m/s. After the collision, the 3.0 kg cart is moving to the left with a speed of 1.0 m/s. a. What is the final velocity of the 5 kg cart? b. Determine the speed of the center of mass of the two carts before and...
A pendulum consists of a ball of mass 3.0 kg on a string of length 4.0...
A pendulum consists of a ball of mass 3.0 kg on a string of length 4.0 m. The ball is pulled back untilits center has risen to a height of 0.80 m. The ball is released such that it strikes a 1.0 kg block at thebottom of its swing. The block comes to a rest after traveling 2.0 m across a surface withμk= 0.15.What is the speed of the ball right after the collision? Is the collision elastic?
A 0.042 kg aluminum bullet traveling at 456 m/s strikes an armor plate and comes to...
A 0.042 kg aluminum bullet traveling at 456 m/s strikes an armor plate and comes to a stop. If all its energy is converted to heat that is absorbed by the bullet, what is the bullet's temperature change in degrees Celsius? (This is a multi-step problem.)
A 10 g bullet traveling at 350 m/s strikes a 9.0 kg , 1.2-m-wide door at...
A 10 g bullet traveling at 350 m/s strikes a 9.0 kg , 1.2-m-wide door at the edge opposite the hinge. The bullet embeds itself in the door, causing the door to swing open. What is the angular velocity of the door just after impact?
A 8-g bullet moving horizontally with speed of 250 m/s strikes and remains in a 4.0-kg...
A 8-g bullet moving horizontally with speed of 250 m/s strikes and remains in a 4.0-kg block initially at rest on the edge of a table. The block, which is initially 80 cm above the floor, strikes the floor a horizontal distance from the base of table. What is the horizontal distance on the floor?
A 0.55 kg basketball strikes a smooth floor at 4.0 m/s[20° below the horizontal] and rebounds...
A 0.55 kg basketball strikes a smooth floor at 4.0 m/s[20° below the horizontal] and rebounds at 4.0 m/s[20°above the horizontal]. a) Find the horizontal impulse acting on the ball. b) Find the vertical impulse acting on the ball.
A 100 g bullet traveling in the x-direction at 100 m/s strikes a 1 kg wooden...
A 100 g bullet traveling in the x-direction at 100 m/s strikes a 1 kg wooden block at rest. After the collision, wooden block splits into two parts [.2 kg and .8 kg] and the bullet is observed traveling at a speed of 50 m/s in the x-direction. Assume that the wooden pieces are traveling in the x-y plane and the .8 kg piece is traveling 30 degrees to the right of the x-direction. If the kinetic energies of the...
A 29-g rifle bullet traveling 280 m/s buries itself in a 3.0-kg pendulum hanging on a...
A 29-g rifle bullet traveling 280 m/s buries itself in a 3.0-kg pendulum hanging on a 2.7-m-long string, which makes the pendulum swing upward in an arc. Determine the vertical and horizontal components of the pendulum's maximum displacement.
A 5 kg ball is traveling to the right at a speed of 12 m/s.  A 2...
A 5 kg ball is traveling to the right at a speed of 12 m/s.  A 2 kg ball is traveling to the left at 30 m/s.  They collide in an inelastic collision.   What is their final speed? 0 m/s 12 m/s 17 m/s 30 m/s 42 m/s A 2000 kg truck drives the right at a speed of 40 m/s. How many 0.25 kg bullets fired at 350 m/s need to be fired at the front of the truck to stop...
Blocks with masses of 3.0 kg, 4.0 kg, and 5.0 kg are lined up in a...
Blocks with masses of 3.0 kg, 4.0 kg, and 5.0 kg are lined up in a row on a frictionless table. All three are pushed forward by a 19N force applied to the 3.0 kg block. a) How much force does the 4.0 kg block exert on the 5.0 kg block? b)How much force does the 4.0 kg block exert on the 3.0 kg block? please explain! thanks!
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT