In: Finance
If you borrow $40,000 today and agree to repay the loan in 24 annual payments, how much do you owe every year? Assume this is an amortized loan with 10% interest rate, compounded annually?
Loan amount = | 40000 |
Interest rate annual= 10% or | 0.1 |
Time in years (n)= | 24 |
Equal annual payments for loan formula = P* i *((1+i)^n)/((1+i)^n-1) |
|
40000*0.10*((1+0.10)^24)/(((1+0.10)^24)-1) |
|
$4,451.99 |
Amount owed every year shall be $ 4451.99
(Please thumbs up)
Loan amortization table |
|||||
Year | Beginning balance | Annual Payment | Interest @10% | Principal payment received |
Ending balance |
(Beg. Bal.*8%) | (Payment - interest) |
(Beg. Balance - Loan red.) |
|||
1 | 40000.00 | 4451.99 | 4000.00 | 451.99 | 39548.01 |
2 | 39548.01 | 4451.99 | 3954.80 | 497.19 | 39050.82 |
3 | 39050.82 | 4451.99 | 3905.08 | 546.91 | 38503.91 |
4 | 38503.91 | 4451.99 | 3850.39 | 601.60 | 37902.31 |
5 | 37902.31 | 4451.99 | 3790.23 | 661.76 | 37240.55 |
6 | 37240.55 | 4451.99 | 3724.05 | 727.94 | 36512.61 |
7 | 36512.61 | 4451.99 | 3651.26 | 800.73 | 35711.88 |
8 | 35711.88 | 4451.99 | 3571.19 | 880.80 | 34831.08 |
9 | 34831.08 | 4451.99 | 3483.11 | 968.88 | 33862.20 |
10 | 33862.20 | 4451.99 | 3386.22 | 1065.77 | 32796.43 |
11 | 32796.43 | 4451.99 | 3279.64 | 1172.35 | 31624.08 |
12 | 31624.08 | 4451.99 | 3162.41 | 1289.58 | 30334.50 |
13 | 30334.50 | 4451.99 | 3033.45 | 1418.54 | 28915.95 |
14 | 28915.95 | 4451.99 | 2891.60 | 1560.40 | 27355.56 |
15 | 27355.56 | 4451.99 | 2735.56 | 1716.44 | 25639.12 |
16 | 25639.12 | 4451.99 | 2563.91 | 1888.08 | 23751.04 |
17 | 23751.04 | 4451.99 | 2375.10 | 2076.89 | 21674.16 |
18 | 21674.16 | 4451.99 | 2167.42 | 2284.58 | 19389.58 |
19 | 19389.58 | 4451.99 | 1938.96 | 2513.03 | 16876.55 |
20 | 16876.55 | 4451.99 | 1687.65 | 2764.34 | 14112.21 |
21 | 14112.21 | 4451.99 | 1411.22 | 3040.77 | 11071.44 |
22 | 11071.44 | 4451.99 | 1107.14 | 3344.85 | 7726.60 |
23 | 7726.60 | 4451.99 | 772.66 | 3679.33 | 4047.26 |
24 | 4047.26 | 4451.99 | 404.73 | 4047.26 | 0.00 |