Question

In: Physics

a glass tube both ends are open is dipped inside mercury so that one half is...

a glass tube both ends are open is dipped inside mercury so that one half is above the mercury level. then the one half of open end is closed and taken out there with a

10 cm long mercury left. if atmospheric pressure is 76cnHG calculate the length of the tube

answer is 16 cm pls explain the answer

Solutions

Expert Solution


Related Solutions

A U-shaped tube, open to the air on both ends, contains mercury.
A U-shaped tube, open to the air on both ends, contains mercury. Water is poured into the left arm until the water column is 11.3cm deep.How far upward from its initial position does the mercury in the right arm rise?(In mm)
Consider a flute: would it be best modelled by a tube open at both ends or...
Consider a flute: would it be best modelled by a tube open at both ends or as a tube with one end open, and one end close? What is the condition for resonance as a function of the tube length in both cases? Sketch the displacement of molecules in a flute for the fundamental mode (1st harmonic) along with the 2nd and 3rd harmonics.
A long, clear, flexible tube is bent into a U shape (open at both ends), and...
A long, clear, flexible tube is bent into a U shape (open at both ends), and we pour water into it (density 1000 kg/m3) until the water reaches the same level on both vertical sides. Now we pour a 7 cm tall column of mercury into the left side (density 13,600 kg/m3), which does not mix with the water. (a) When the fluids reach equilibrium, find the difference in elevation between the top of the mercury (on the left) and...
One of the harmonic frequencies of tube A with two open ends is 836 Hz. The...
One of the harmonic frequencies of tube A with two open ends is 836 Hz. The next-highest harmonic frequency is 912 Hz. (a) What harmonic frequency is next highest after the harmonic frequency 228 Hz? (b) What is the number of this next-highest harmonic? One of the harmonic frequencies of tube B with only one open end is 2940 Hz. The next-highest harmonic frequency is 3220 Hz. (c) What harmonic frequency is next highest after the harmonic frequency 3780 Hz?...
A hollow tube of length L = 66.0 cm, open at both ends as shown above,...
A hollow tube of length L = 66.0 cm, open at both ends as shown above, is held in midair. A tuning fork with a frequency f = 256 Hz vibrates at one end of the tube and causes the air in the tube to vibrate at its fundamental frequency. Do not assume a value for the speed of sound in air. Give all of your answers to three significant digits. The same tube is submerged in a large, graduated...
A tube at room temperature which is 0.680 m long is open on both ends. Which...
A tube at room temperature which is 0.680 m long is open on both ends. Which frequencies of sound will resonate in the tube? The tube is then covered on one end. Which frequencies of sound will resonate in the tube now? e) lowest frequency f) 2nd lowest frequency g) 3rd lowest frequency h) What is the highest frequency of audible sound that will resonate in this tube?
A vertical glass tube of length L = 1.280000 m is half filled with a liquid...
A vertical glass tube of length L = 1.280000 m is half filled with a liquid at 20.000 000 degrees C. How much will the height of the liquid column change when the tube and liquid are heated to 30.000000 degrees C? Use coefficients alpha_glass = 1.000 000 x 10^-5/K and Beta_liquid = 4.000 000 x 10^-5/K
In a galvanic cell, one half-cell consists of a lead strip dipped into a 1.00 M...
In a galvanic cell, one half-cell consists of a lead strip dipped into a 1.00 M solution of Pb(NO3)2. In the second half-cell, solid neodymium is in contact with a 1.00 M solution of Nd(NO3)3. Pb is observed to plate out as the galvanic cell operates, and the initial cell voltage is measured to be 2.197 V at 25°C. (a) Write balanced equations for the half-reactions at the anode and the cathode. Show electrons as e-. Use the smallest integer...
1. Explain why a packed fractionating column (steel wool inside the glass tube) is more efficient...
1. Explain why a packed fractionating column (steel wool inside the glass tube) is more efficient than an unpacked one for distillation? Explain in detail. 2. If 3 spots on a TLC, plates have the following Rfs, A= 0.43, B=0.89, and C=0.53 what would be the order that the spots came off a column? What would happen if you increased the polarity of the solvent?
An insect is embedded inside a glass block( n=1.4) so that it is located 3.8cm below...
An insect is embedded inside a glass block( n=1.4) so that it is located 3.8cm below a plane surface of the block. how far from this surface does this insect appear to a person looking at the block?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT