Question

In: Physics

A hollow tube of length L = 66.0 cm, open at both ends as shown above,...

A hollow tube of length L = 66.0 cm, open at both ends as shown above, is held in midair. A tuning fork with a frequency f = 256 Hz vibrates at one end of the tube and causes the air in the tube to vibrate at its fundamental frequency. Do not assume a value for the speed of sound in air. Give all of your answers to three significant digits.

The same tube is submerged in a large, graduated cylinder filled with water. The tube is slowly raised out of the water and the same tuning fork, vibrating with frequency f = 256 Hz, is held a fixed distance from the top of the tube. (The water essentially makes the tube closed on one end.)

  1. Determine the height h of the tube above the water when the air column resonates for the first time. Draw a picture of the standing wave in the tube that supports your work.
  2. Using the same tuning fork, you pull the tube out of the water, looking for the next length at which you will hear resonance. What length is this? Can you get there with this tube? Explain.
  3. Is the open end of the tube the location of a pressure node, or a pressure antinode? Explain why. (Make sure your explanation includes information about how the air molecules do or do not move.)
  4. In order to get a standing wave, two waves have to interfere. What are the two waves that are interfering to create the standing waves in this situation?

Solutions

Expert Solution


Related Solutions

A U-shaped tube, open to the air on both ends, contains mercury.
A U-shaped tube, open to the air on both ends, contains mercury. Water is poured into the left arm until the water column is 11.3cm deep.How far upward from its initial position does the mercury in the right arm rise?(In mm)
Consider a flute: would it be best modelled by a tube open at both ends or...
Consider a flute: would it be best modelled by a tube open at both ends or as a tube with one end open, and one end close? What is the condition for resonance as a function of the tube length in both cases? Sketch the displacement of molecules in a flute for the fundamental mode (1st harmonic) along with the 2nd and 3rd harmonics.
A long, clear, flexible tube is bent into a U shape (open at both ends), and...
A long, clear, flexible tube is bent into a U shape (open at both ends), and we pour water into it (density 1000 kg/m3) until the water reaches the same level on both vertical sides. Now we pour a 7 cm tall column of mercury into the left side (density 13,600 kg/m3), which does not mix with the water. (a) When the fluids reach equilibrium, find the difference in elevation between the top of the mercury (on the left) and...
A tube at room temperature which is 0.680 m long is open on both ends. Which...
A tube at room temperature which is 0.680 m long is open on both ends. Which frequencies of sound will resonate in the tube? The tube is then covered on one end. Which frequencies of sound will resonate in the tube now? e) lowest frequency f) 2nd lowest frequency g) 3rd lowest frequency h) What is the highest frequency of audible sound that will resonate in this tube?
a glass tube both ends are open is dipped inside mercury so that one half is...
a glass tube both ends are open is dipped inside mercury so that one half is above the mercury level. then the one half of open end is closed and taken out there with a 10 cm long mercury left. if atmospheric pressure is 76cnHG calculate the length of the tube answer is 16 cm pls explain the answer
A string of length L = 1 is held fixed at both ends. The string is...
A string of length L = 1 is held fixed at both ends. The string is initially deformed into a shape given by u(x, t = 0) = sin^2(πx) and released. Assume a value of c2 = 1. Find the solution u(x, t) for the vibration of the string by separation of variables.
1. A string is fixed at both ends. If only the length (L) increases, then the...
1. A string is fixed at both ends. If only the length (L) increases, then the fundamental frequency goes: (circle one) up down 2. If only the tension (T) increases, the fundamental goes: (circle one) up down 3. If only the linear mass density increases, the fundamental goes: (circle one) up down 4. The tension (T) in a string fixed across a 1 m length (L) is 400 Newtons, and the linear mass density of the string is 0.01 kg/m....
A string with a length of 35 cm is fixed at both ends. Waves travel along...
A string with a length of 35 cm is fixed at both ends. Waves travel along it at a speed of 4 m/s. What is the frequency of its lowest mode of standing waves? At what distance from the end of the string is the first node if the string is vibrating at four times its fundamental frequency?
The Elephant ear canal has a length of 17 cm, and is also an open-closed tube....
The Elephant ear canal has a length of 17 cm, and is also an open-closed tube. Assume the speed of sound is 343 m/s. a) Calculate the fundamental frequency of the Elephant's ear canal. b) Should sound with that frequency appear to be louder to the elephant, or quieter than half that frequency? Also, can the average human hear this sound? What range of frequencies can the average human hear? d) Draw a diagram of (i) the displacement of air...
The tube length in a certain compound microscope is 25 cm. The focal length of the...
The tube length in a certain compound microscope is 25 cm. The focal length of the objective lens is 2.1 cm. The clearest image is formed when an object of height 1 mm is placed at a distance of 2.3 cm from the objective lens. Determine: (i) The position of the intermediate image, (ii) the focal length of the eye piece, that will place the final image at the near-point, (iii) the total magnification of the microscope and the height...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT