Question

In: Physics

Straight wooden rod of mass 6.0 kg, uniform cross-section 7 cm2, and constant density 700 kg...

Straight wooden rod of mass 6.0 kg, uniform cross-section 7 cm2, and constant density 700 kg has a very small mass 0.8 kg attached to its one end. The rod is partially submerged in water of density 990kg/m3.  While in equilibrium, the rod floats in a vertical position with large part of it submerged. The rod is then pushed down by distance ymax from equilibrium and released resulting in its oscillation neat the surface of teh water.

(Assuming no drag forces are acting in this situation) and taking g to be 9.8 m/s2

A) Use the first principles to demonstrate that such system can be treated as Simple Harmonic Oscillator. ( Paper solution!!!)

B) Find the rod's period of oscillations to the nearest thousandth of a second.

( Enter this value into the answer box without units).

In addition to entering your final numerical answer into the box, make sure that you write your solution neatly starting with the clear diagram and all variables on it.

Solve this problem in detail on paper. Please annotate your solution -- make short comments/ arguments for steps you are making.

Solutions

Expert Solution

Let mass of the rod be , mass of the small mass be , length of the rod be , density of the rod be , density of water be , area of the rod be and the length of the rod that is immersed in water when its in equilibrium be

  1. equilibrium position

force of bouyency

force of gravity

2. displaced by a small distance

force of bouyency

force of gravity

net force = force of bouyency -force of gravity

from newtons second law of motion

net force

negative sign indicates the direcition is opposite.

from the above you can see acceleration is directly proportional to displacement but in opposite direction.

we know that this behavior implies the motion is 'simple harmonic motion'

in simple harmonic motion

time period of oscillation


Related Solutions

A uniform steel rod has mass 0.300 kg and length 40.0 cmand is horizontal. A uniform...
A uniform steel rod has mass 0.300 kg and length 40.0 cmand is horizontal. A uniform sphere with radius 8.00 cm and mass 0.700 kg is welded to one end of the bar, and a uniform sphere with radius 6.00 cm and mass 0.580 kg is welded to the other end of the bar. The centers of the rod and of each sphere all lie along a horizontal line. Part A How far is the center of gravity of the...
As shown in the figure, a conducting rod with a linear mass density of 0.0395 kg/m...
As shown in the figure, a conducting rod with a linear mass density of 0.0395 kg/m is suspended by two flexible wires of negligible mass in a uniform magnetic field directed into the page. A power supply is used to send a current through the rod such that the tension in the support wires is zero. (a) If the magnitude of the magnetic field is 3.70 T, determine the current in the conducting rod. (b) Determine the direction of the...
A 0.0147-kg bullet is fired straight up at a falling wooden block that has a mass...
A 0.0147-kg bullet is fired straight up at a falling wooden block that has a mass of 2.94 kg. The bullet has a speed of 760 m/s when it strikes the block. The block originally was dropped from rest from the top of a building and had been falling for a time t when the collision with the bullet occurs. As a result of the collision, the block (with the bullet in it) reverses direction, rises, and comes to a...
A 0.00618-kg bullet is fired straight up at a falling wooden block that has a mass...
A 0.00618-kg bullet is fired straight up at a falling wooden block that has a mass of 1.52 kg. The bullet has a speed of 616 m/s when it strikes the block. The block originally was dropped from rest from the top of a building and had been falling for a time t when the collision with the bullet occurs. As a result of the collision, the block (with the bullet in it) reverses direction, rises, and comes to a...
A uniform rod of mass 2.20 kg and length 2.00 m is capable ofrotating about...
A uniform rod of mass 2.20 kg and length 2.00 m is capable of rotating about an axis passing through its center and perpendicular to its length. A mass m1 = 4.90 kg is attached to one end and a second mass m2 = 2.60 kg is attached to the other end of the rod. Treat the two masses as point particles. At the origina of an xy-coordinate plane a rod of length labeled l rotates around it's midpoint. Attached to...
A uniform rod of length 2.00 m and mass 5.00 kg is suspended by two ropes...
A uniform rod of length 2.00 m and mass 5.00 kg is suspended by two ropes of negligible mass. The rope at the lower end is horizontal. The rope at the upper end makes an angle φ = 30.0◦ with the vertical. φ θ (a) Draw a free body diagram for the rod. (b) What is the tension in the upper rope? (c) What is the tension in the lower (horizontal) rope? (d) What is the angle θ the rod...
A uniform thin rod of length 0.4 m and mass 0.5 kg can rotate in a...
A uniform thin rod of length 0.4 m and mass 0.5 kg can rotate in a horizontal plane about a vertical axis on the left end of the rod. The rod is at rest when a 10.0-g bullet traveling in the horizontal plane of the rod is fired into the right end of the rod at an angle 90o with the rod. The bullet lodges in the rod and the angular velocity of the rod is 10 rad/s immediately after...
A thin uniform rod (mass = 0.420 kg) swings about an axis that passes through one...
A thin uniform rod (mass = 0.420 kg) swings about an axis that passes through one end of the rod and is perpendicular to the plane of the swing. The rod swings with a period of 1.45 s and an angular amplitude of 10.6
Consider a long (length = 15 m) uniform wooden beam (mass = 60 kg) attached horizontally...
Consider a long (length = 15 m) uniform wooden beam (mass = 60 kg) attached horizontally to a wall that can only support a vertical load ( The horizontal component of the force of the wall on the beam is identically zero). There is a chandelier (mass = 40 kg) hanging at a distance = 4.21 meter from the end of the beam that is attached to the wall. There is a vertical cable hanging down from the ceiling that...
A uniform 6.0-m-long ladder of mass 15.0 kg leans against a smooth wall (so the force...
A uniform 6.0-m-long ladder of mass 15.0 kg leans against a smooth wall (so the force exerted by the wall, F→W, is perpendicular to the wall). The ladder makes an angle of 25.0 ∘ with the vertical wall, and the ground is rough. Determine the coefficient of static friction at the base of the ladder if the ladder is not to slip when a 77.0-kg person stands three-fourths of the way up the ladder.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT