Question

In: Physics

A uniform rod of mass 2.20 kg and length 2.00 m is capable ofrotating about...

A uniform rod of mass 2.20 kg and length 2.00 m is capable of rotating about an axis passing through its center and perpendicular to its length. A mass m1 = 4.90 kg is attached to one end and a second mass m2 = 2.60 kg is attached to the other end of the rod. Treat the two masses as point particles. 

At the origina of an xy-coordinate plane a rod of length labeled l rotates around it's midpoint. Attached to either end of the rod is a spherical mass. The lefthand mass is labeled m_2 and the righthand mass is labeled m_1. Both masses have an arrow labeled vector v tangent to the dashed circle they travel as they rotate clockwise. 


(a) What is the moment of inertia of the system in kg · m2? kg · m2 

(b) If the rod rotates with an angular speed of 2.50 rad/s, how much kinetic energy, in joules, does the system have? J 

(c) Now consider the rod to be of negligible mass. What is the moment of inertia of the rod and masses combined, in kg · m2? kg · m2 

(d) If the rod is of negligible mass, what is the kinetic energy, in joules, when the angular speed is 2.50 rad/s? J

Solutions

Expert Solution


Related Solutions

A uniform rod of length 2.00 m and mass 5.00 kg is suspended by two ropes...
A uniform rod of length 2.00 m and mass 5.00 kg is suspended by two ropes of negligible mass. The rope at the lower end is horizontal. The rope at the upper end makes an angle φ = 30.0◦ with the vertical. φ θ (a) Draw a free body diagram for the rod. (b) What is the tension in the upper rope? (c) What is the tension in the lower (horizontal) rope? (d) What is the angle θ the rod...
A uniform thin rod of length 0.4 m and mass 0.5 kg can rotate in a...
A uniform thin rod of length 0.4 m and mass 0.5 kg can rotate in a horizontal plane about a vertical axis on the left end of the rod. The rod is at rest when a 10.0-g bullet traveling in the horizontal plane of the rod is fired into the right end of the rod at an angle 90o with the rod. The bullet lodges in the rod and the angular velocity of the rod is 10 rad/s immediately after...
A uniform steel rod has mass 0.300 kg and length 40.0 cmand is horizontal. A uniform...
A uniform steel rod has mass 0.300 kg and length 40.0 cmand is horizontal. A uniform sphere with radius 8.00 cm and mass 0.700 kg is welded to one end of the bar, and a uniform sphere with radius 6.00 cm and mass 0.580 kg is welded to the other end of the bar. The centers of the rod and of each sphere all lie along a horizontal line. Part A How far is the center of gravity of the...
A simple pendulum has a mass of 0.550 kg and a length of 2.00 m. It...
A simple pendulum has a mass of 0.550 kg and a length of 2.00 m. It is displaced through an angle of 11.0
The uniform pole of length 5 m and mass M = 94.2 kg is placed against...
The uniform pole of length 5 m and mass M = 94.2 kg is placed against the supporting surfaces shown. If the coefficient of static friction at both A and B is 0.25. Determine the maximum angle theta (in degrees) at which the pole can be placed before it begins to slip.
A uniform stationary ladder of length L = 4.2 m and mass M = 19 kg...
A uniform stationary ladder of length L = 4.2 m and mass M = 19 kg leans against a smooth vertical wall, while its bottom legs rest on a rough horizontal floor. The coefficient of static friction between floor and ladder is μ = 0.38. The ladder makes an angle θ = 53° with respect to the floor. A painter of mass 8M stands on the ladder a distance d from its base. a. Find the magnitude of the normal...
The thin uniform rod in the figure has length 5.0 m and can pivot about a...
The thin uniform rod in the figure has length 5.0 m and can pivot about a horizontal, frictionless pin through one end. It is released from rest at angle θ = 50° above the horizontal. Use the principle of conservation of energy to determine the angular speed of the rod as it passes through the horizontal position. Assume free-fall acceleration to be equal to 9.83 m/s2.
A thin uniform rod (mass = 0.420 kg) swings about an axis that passes through one...
A thin uniform rod (mass = 0.420 kg) swings about an axis that passes through one end of the rod and is perpendicular to the plane of the swing. The rod swings with a period of 1.45 s and an angular amplitude of 10.6
A thin copper rod has a mass per unit length of 0.1 kg/m. What is the...
A thin copper rod has a mass per unit length of 0.1 kg/m. What is the minimum current in the rod that would allow it to levitate above the ground in a magnetic field of magnitude 0.5 T? (g = 10.0 m/s2) 2.9 A 2.5 A 2.2 A 2.0 A 1.8 A
A rotating cylindrical rod of mass m=4 Kg and length l=1 meter is connected to a...
A rotating cylindrical rod of mass m=4 Kg and length l=1 meter is connected to a falling weight of 300 grams with a 2 meters string (Maximum distance covered by the falling weight). The distance from the wound string to the axis of rotation is 300 mm. The time taken by the falling weight to halfway is 2 seconds and to the bottom is 3.7 seconds. Calculate the angular momentum of the rod at both the points . Explain the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT