Question

In: Advanced Math

Let p= 11 and 13. (a) Determine all the squares modulo p in (Z/pZ)∗. (b) Using...

Let p= 11 and 13. (a) Determine all the squares modulo p in (Z/pZ)∗. (b) Using this determine the value of the Legendre symbol(a/p)for all a∈(Z/pZ)∗. (c) For all a∈(Z/pZ)∗, compute a^((p−1)/2) and confirm that a^((p−1)/2)=(a/p).

Solutions

Expert Solution


Related Solutions

1. (a) Let p be a prime. Prove that in (Z/pZ)[x], xp−x= x(x−1)(x−2)···(x−(p−1)). (b) Use your...
1. (a) Let p be a prime. Prove that in (Z/pZ)[x], xp−x= x(x−1)(x−2)···(x−(p−1)). (b) Use your answer to part (a) to prove that for any prime p, (p−1)!≡−1 (modp).
Let ∼ be the relation on P(Z) defined by A ∼ B if and only if...
Let ∼ be the relation on P(Z) defined by A ∼ B if and only if there is a bijection f : A → B. (a) Prove or disprove: ∼ is reflexive. (b) Prove or disprove: ∼ is irreflexive. (c) Prove or disprove: ∼ is symmetric. (d) Prove or disprove: ∼ is antisymmetric. (e) Prove or disprove: ∼ is transitive. (f) Is ∼ an equivalence relation? A partial order?
Consider these 2 functions (all with domain and codomain (Z/pZ) for some big prime p): h(x)...
Consider these 2 functions (all with domain and codomain (Z/pZ) for some big prime p): h(x) = 1492831*x and h(x) = x3 . Why are these bad cryptographic hash functions? Give different reasons for the two.
Let p be an odd prime. (a) (*) Prove that there is a primitive root modulo...
Let p be an odd prime. (a) (*) Prove that there is a primitive root modulo p2 . (Hint: Use that if a, b have orders n, m, with gcd(n, m) = 1, then ab has order nm.) (b) Prove that for any n, there is a primitive root modulo pn. (c) Explicitly find a primitive root modulo 125. Please do all parts. Thank you in advance
1. Determine an inverse of a modulo m for a = 6 and m = 11.  This...
1. Determine an inverse of a modulo m for a = 6 and m = 11.  This is equivalent to answering the question “_______ is the unique inverse of 6 (mod 11) that is non-negative and < 11.”  Show your work following the steps. Beside the inverse you identified in part a), identify two other inverses of 6 (mod 11).   Hint:  All of these inverses are congruent to each other mod 11. Although the congruence can be solved using any of the inverses...
(A) Let a,b,c∈Z. Prove that if gcd(a,b)=1 and a∣bc, then a∣c. (B) Let p ≥ 2....
(A) Let a,b,c∈Z. Prove that if gcd(a,b)=1 and a∣bc, then a∣c. (B) Let p ≥ 2. Prove that if 2p−1 is prime, then p must also be prime. (Abstract Algebra)
Find all primitive roots: (a) modulo 25, or show that there are none (b) modulo 34,...
Find all primitive roots: (a) modulo 25, or show that there are none (b) modulo 34, or show that there are none (c) Assuming that 2 is a primitive root modulo 67, find all primitive roots modulo 67.
Suppose A = {(a, b)| a, b ∈ Z} = Z × Z. Let R be...
Suppose A = {(a, b)| a, b ∈ Z} = Z × Z. Let R be the relation define on A where (a, b)R(c, d) means that 2 a + d = b + 2 c. a. Prove that R is an equivalence relation. b. Find the equivalence classes [(−1, 1)] and [(−4, −2)].
Find the indicated probabilities using a standard normal distribution a. P(Z < 1.85) b. P(Z <...
Find the indicated probabilities using a standard normal distribution a. P(Z < 1.85) b. P(Z < -1.54 or Z > 1.54)
Let Z[ √ 2] = {a + b √ 2 | a, b ∈ Z}. (a)...
Let Z[ √ 2] = {a + b √ 2 | a, b ∈ Z}. (a) Prove that Z[ √ 2] is a subring of R. (b) Find a unit in Z[ √ 2] that is different than 1 or −1.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT