Question

In: Advanced Math

Let ∼ be the relation on P(Z) defined by A ∼ B if and only if...

Let ∼ be the relation on P(Z) defined by A ∼ B if and only if there is a bijection f : A → B. (a) Prove or disprove: ∼ is reflexive. (b) Prove or disprove: ∼ is irreflexive. (c) Prove or disprove: ∼ is symmetric. (d) Prove or disprove: ∼ is antisymmetric. (e) Prove or disprove: ∼ is transitive. (f) Is ∼ an equivalence relation? A partial order?

Solutions

Expert Solution


Related Solutions

Show that the relation 'a R b if and only if a−b is an even integer defined on the Z of integers is an equivalence relation.
Show that the relation 'a R b if and only if a−b is an even integer defined on the Z of integers is an equivalence relation.
Let S = {2 k : k ∈ Z}. Let R be a relation defined on...
Let S = {2 k : k ∈ Z}. Let R be a relation defined on Q− {0} by x R y if x y ∈ S. Prove that R is an equivalence relation. Determine the equivalence class
Let R be the relation on Z+× Z+ such that (a, b) R (c, d) if...
Let R be the relation on Z+× Z+ such that (a, b) R (c, d) if and only if ad=bc. (a) Show that R is an equivalence relation. (b) What is the equivalence class of (1,2)? List out at least five elements of the equivalence class. (c) Give an interpretation of the equivalence classes for R. [Here, an interpretation is a description of the equivalence classes that is more meaningful than a mere repetition of the definition of R. Hint:...
(A) Let a,b,c∈Z. Prove that if gcd(a,b)=1 and a∣bc, then a∣c. (B) Let p ≥ 2....
(A) Let a,b,c∈Z. Prove that if gcd(a,b)=1 and a∣bc, then a∣c. (B) Let p ≥ 2. Prove that if 2p−1 is prime, then p must also be prime. (Abstract Algebra)
Suppose A = {(a, b)| a, b ∈ Z} = Z × Z. Let R be...
Suppose A = {(a, b)| a, b ∈ Z} = Z × Z. Let R be the relation define on A where (a, b)R(c, d) means that 2 a + d = b + 2 c. a. Prove that R is an equivalence relation. b. Find the equivalence classes [(−1, 1)] and [(−4, −2)].
Let f : Z × Z → Z be defined by f(n, m) = n −...
Let f : Z × Z → Z be defined by f(n, m) = n − m a. Is this function one to one? Prove your result. b. Is this function onto Z? Prove your result
Let Z[ √ 2] = {a + b √ 2 | a, b ∈ Z}. (a)...
Let Z[ √ 2] = {a + b √ 2 | a, b ∈ Z}. (a) Prove that Z[ √ 2] is a subring of R. (b) Find a unit in Z[ √ 2] that is different than 1 or −1.
Consider the relation R defined on the set Z as follows: ∀m, n ∈ Z, (m,...
Consider the relation R defined on the set Z as follows: ∀m, n ∈ Z, (m, n) ∈ R if and only if m + n = 2k for some integer k. For example, (3, 11) is in R because 3 + 11 = 14 = 2(7). (a) Is the relation reflexive? Prove or disprove. (b) Is the relation symmetric? Prove or disprove. (c) Is the relation transitive? Prove or disprove. (d) Is it an equivalence relation? Explain.
Let R be the relation on Q defined by a/b R c/d iff ad=bc. Show that...
Let R be the relation on Q defined by a/b R c/d iff ad=bc. Show that R is an equivalence relation. Describe the elements of the equivalence class of 2/3.
6. Let R be a relation on Z x Z such that for all ordered pairs...
6. Let R be a relation on Z x Z such that for all ordered pairs (a, b),(c, d) ∈ Z x Z, (a, b) R (c, d) ⇔ a ≤ c and b|d . Prove that R is a partial order relation.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT