In: Statistics and Probability
The following example can help make the CI concept come alive. In a systematic review synthesizing studies of the effect of tai chi exercise on sleep quality, Du and colleagues (2015) found tai chi affected sleep quality in older people as measured by the Pittsburgh Sleep Quality Index (mean difference of -0.87; 95% CI [-1.25, -0.49]). Here’s how clinicians caring for older adults in the community would interpret these results: Across the studies reviewed, older people reported better sleep if they engaged in tai chi exercise. The lower boundary of the CI is -1.25, the study statistic is -0.87, and the upper boundary is -0.49. Each limit is 0.38 from the sample statistic, which is a relatively narrow CI. Keep in mind that a mean difference of 0 indicates there’s no difference; this CI doesn’t contain that value. Therefore, the sample statistic is statistically significant and unlikely to occur by chance. Because this was a systematic review and tai chi exercise has been established as helping people sleep, based on the sample statistics and the CI, clinicians can confidently include tai chi exercises among possible recommendations for patients who have difficulty sleeping.
Now you can apply your knowledge of CIs to make wise decisions about whether to base your patient care on a particular research finding