In: Statistics and Probability
Use the given degree of confidence and sample data to construct a confidence interval for the population mean µ.
The data below consists of the test scores of 32 students. Construct a 99% confidence interval for the population
| 
 80  | 
 74  | 
 61  | 
 93  | 
 96  | 
 70  | 
 80  | 
 64  | 
| 
 51  | 
 98  | 
 93  | 
 87  | 
 72  | 
 77  | 
 84  | 
 96  | 
| 
 100  | 
 67  | 
 71  | 
 79  | 
 99  | 
 85  | 
 66  | 
 70  | 
| 
 57  | 
 75  | 
 86  | 
 92  | 
 94  | 
 61  | 
 80  | 
 99  | 
The given data is inputted in EXCEL here as:
| S.No. | X | X - Mean(X) | (X - Mean(X))^2 | |
| 1 | 80 | 0.09375 | 0.008789063 | |
| 2 | 74 | -5.90625 | 34.88378906 | |
| 3 | 61 | -18.90625 | 357.4462891 | |
| 4 | 93 | 13.09375 | 171.4462891 | |
| 5 | 96 | 16.09375 | 259.0087891 | |
| 6 | 70 | -9.90625 | 98.13378906 | |
| 7 | 80 | 0.09375 | 0.008789063 | |
| 8 | 64 | -15.90625 | 253.0087891 | |
| 9 | 51 | -28.90625 | 835.5712891 | |
| 10 | 98 | 18.09375 | 327.3837891 | |
| 11 | 93 | 13.09375 | 171.4462891 | |
| 12 | 87 | 7.09375 | 50.32128906 | |
| 13 | 72 | -7.90625 | 62.50878906 | |
| 14 | 77 | -2.90625 | 8.446289063 | |
| 15 | 84 | 4.09375 | 16.75878906 | |
| 16 | 96 | 16.09375 | 259.0087891 | |
| 17 | 100 | 20.09375 | 403.7587891 | |
| 18 | 67 | -12.90625 | 166.5712891 | |
| 19 | 71 | -8.90625 | 79.32128906 | |
| 20 | 79 | -0.90625 | 0.821289063 | |
| 21 | 99 | 19.09375 | 364.5712891 | |
| 22 | 85 | 5.09375 | 25.94628906 | |
| 23 | 66 | -13.90625 | 193.3837891 | |
| 24 | 70 | -9.90625 | 98.13378906 | |
| 25 | 57 | -22.90625 | 524.6962891 | |
| 26 | 75 | -4.90625 | 24.07128906 | |
| 27 | 86 | 6.09375 | 37.13378906 | |
| 28 | 92 | 12.09375 | 146.2587891 | |
| 29 | 94 | 14.09375 | 198.6337891 | |
| 30 | 61 | -18.90625 | 357.4462891 | |
| 31 | 80 | 0.09375 | 0.008789063 | |
| 32 | 99 | 19.09375 | 364.5712891 | |
| 2557 | 0 | 5890.71875 | 
For the above data, the sum of the columns is shown in the last row.
The mean of the above data is computed here as:

Now the sample standard deviation is computed here as:

For n - 1 = 31 degrees of freedom, we get from the t distribution tables:
P( t31 < 2.744) = 0.995
Therefore, due to symmetry, we get here:
P( -2.744 < t31 < 2.744) = 0.99
Therefore the confidence interval for the mean here is obtained as:




This is the required 99% confidence interval for the population mean here.