Question

In: Physics

A charged particle with negative charge Q=-5C is moving with the speed v=400 m/s and the...

A charged particle with negative charge Q=-5C is moving with the speed v=400 m/s and the direction of the velocity vector is at 60 degrees above horizontal as shown in the figure below. The particle moves in the presence of the magnetic field B produced by the long horizontal wire with current I=100 A flowing to the right.

A.)Find the magnitude of the magnetic field B at the location of the particle, 10 cm above the wire. Give your answer in mT (10-3 T) units.

B.)Find the direction of the magnetic field at the location of the particle.

Pick the correct answer out of multiple options

Pick the correct answer out of multiple options

horizontally to the right
pointing up
pointing out of the page
horizontally to the right
pointing into the page
pointing down

C.)Find the magnitude of the magnetic force acting on the moving particle. (in newtons)

D.) Find the magnitude of the horizontal component of the magnetic force. (in newtons)

E.)We assume that the x axis is horizontal in the paper plane pointing to the right, y axis is in paper plane pointing up, and z axiis is horizontal pointing out of paper plane. Thus x-z is the horizontal plane.

In this coordinate system determine the direction of the horizontal component of the magnetic force (vettical component is either along y or opposite to the y axis)

Pick the proper orientatioin of the horizontal force component.

along positive z direction (out of pager)
inclined at 30 degrees from negative z axis
along negative x direciton (to the left)
along +x axis (to the right)
inclinded at 60 degrees form positive z axis
inclined at 60 degrees from negative x axis
along negative z direction (into the page)
inclined at 30 degrees from positive x axis

Solutions

Expert Solution


Related Solutions

A particle with charge q= 7.80?C is moving with velocity v= -3.8 E 3 j [m/s]....
A particle with charge q= 7.80?C is moving with velocity v= -3.8 E 3 j [m/s]. The magnetic force is measured to be F= (+7.60 E -3 i - 5.20 E -3 k) [N]. Calculate the components of the magnetic field Can there be components of the magnetic field that are not determined by the Force? Calculate the vector dot product F*B, what is the angle between F and B?
Problem 1: The energy E of a particle of mass m moving at speed v is...
Problem 1: The energy E of a particle of mass m moving at speed v is given by: E2 = m2 c4 + p2 c2 (1) p=γmv (2) 1 γ = 1−v2/c2 (3) This means that if something is at rest, it’s energy is mc2. We can define a kinetic energy to be the difference between the total energy of an object given by equation (1) and the rest energy mc2. What would be the kinetic energy of a baseball...
A negative charge, -q, has a mass, m, and an initial velocity, v, but is infinitely...
A negative charge, -q, has a mass, m, and an initial velocity, v, but is infinitely far away from a fixed large positive charge of +Q and radius R such that if the negative charge continued at constant velocity it would miss the center of the fixec charge by a perpendicular amount b. But because of the Coulomb attraction between the two charges the incoming negative charge is deviated from its straight line course and attracted to the fixed charge...
A fireworks rocket is moving at a speed of v = 45.7 m/s. The rocket suddenly...
A fireworks rocket is moving at a speed of v = 45.7 m/s. The rocket suddenly breaks into two pieces of equal mass, which fly off with velocities v1 at an angle of theta1 = 30.7° and v2 at an angle of theta2 = 59.3° as shown in the drawing below.
Part Q: A block of mass m moving due east at speed v collides with and...
Part Q: A block of mass m moving due east at speed v collides with and sticks to a block of mass 2m that is moving at the same speed v but in a direction 45.0∘ north of east. Find the direction in which the two blocks move after the collision. Express your answer as angle theta in degrees measured north of east.
A 5.00-kg bullet moving with an initial speed of Vi= 400 m/s is fired into and...
A 5.00-kg bullet moving with an initial speed of Vi= 400 m/s is fired into and passes through a 1.00-kg block as shown in the Figure. The block, initially at rest on a frictionless, horizontal surface, is connected to a spring with force constant 1000 N/m. The block moves d = 5.00 cm to the right after impact before being brought to rest by the spring. Find: The speed at which the bullet emerges from the block. The kinetic energy...
A -4.60 μC charge is moving at a constant speed of 6.90×105 m/s in the +x−direction...
A -4.60 μC charge is moving at a constant speed of 6.90×105 m/s in the +x−direction relative to a reference frame. At the instant when the point charge is at the origin, what is the magnetic-field vector it produces at the following points. a. x=0.500m,y=0, z=0 b. x=0, y=0.500m, z=0 c. x=0.500m, y=0.500m, z=0 d. x=0, y=0, z=0.500m
A small object with mass m, charge q, and initial speed v0 = 6.00×103 m/s is...
A small object with mass m, charge q, and initial speed v0 = 6.00×103 m/s is projected into a uniform electric field between two parallel metal plates of length 26.0 cm (Figure 1). The electric field between the plates is directed downward and has magnitude E = 700 N/C . Assume that the field is zero outside the region between the plates. The separation between the plates is large enough for the object to pass between the plates without hitting...
Suppose that a particle with charge q and mass m is initially at the origin with...
Suppose that a particle with charge q and mass m is initially at the origin with zero velocity in the presence of external electric and magnetic fields given by E = (Ex, 0, Ez), B = (0, 0, Bz). (1) Find x(t) and draw the trajectory the particle follows in space.
A block of mass m= 5.00-kg is moving to the right with a speed of v=...
A block of mass m= 5.00-kg is moving to the right with a speed of v= 2.00 m/son a horizontal,frictionless surface. The block encounters a relaxed(that is, neither compressed nor extended)spring with spring constant k= 2,000.00 N/m. a.What is the kinetic energy of the block before hitting the spring? b.What is the kinetic energy of the block when the spring is at maximum compression? c.How much energy is stored in the spring at maximum compression? d.How far does the spring...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT