In: Physics
A particle with charge q= 7.80?C is moving with velocity v= -3.8 E 3 j [m/s]. The magnetic force is measured to be F= (+7.60 E -3 i - 5.20 E -3 k) [N].
We know that magnetic force on a moving charge in magnetic field is given by:
F = q*VxB
V = (-3800 j) m/s
Assuming, B = (Bx i + By j + Bz k) T
q = charge on particle = 7.80*10^-6 C
Given that, F = (7.60*10^-3 i - 5.20*10^-3 k) N
Now
F = q*VxB = 7.80*10^-6*(-3800 j)x((Bx i + By j + Bz k))
F = -3800*7.80*10^-6*Bx (jxi) - 3800*7.80*10^-6*By (jxj) - 3800*7.80*10^-6*Bz (jxk)
F = -29.64*10^-3*Bx (-k) - 0 - 29.64*10^-3*Bz (i)
F = -29.64*10^-3*Bz i + 29.64*10^-3*Bx k
Now comparing both force values:
(7.60*10^-3 i - 5.20*10^-3 k) N = (-29.64*10^-3*Bz i + 29.64*10^-3*Bx k) N
-29.64*10^-3*Bz = 7.60*10^-3
Bz = 7.60*10^-3/(-29.64*10^-3) = -0.256 T
29.64*10^-3*Bx = 5.20*10^-3
Bx = 5.20*10^-3/(29.64*10^-3) = 0.175 T
Bx = x component of magnetic field = 0.175 T
Bz = z component of magnetic field = -0.256 T
Part B.
Since there is no force on particle in y-direction, So magnetic field cannot be determined in y-direction
Part C.
Scalar product between B and F will be:
B = (0.175 i - 0.256 k) T
F = (7.60*10^-3 i - 5.20*10^-3 k) N
B.F = (0.175 i - 0.256 k).(7.60*10^-3 i - 5.20*10^-3 k)
In scalar product, i.i = k.k = 1
B.F = 0.175*7.60*10^-3 + 0.256*5.20*10^-3
B.F = (2.66*10^-3) N-T = Dot product of F and B
We know that in scalar product:
B.F = |B|*|F|*cos theta
theta = arccos (B.F/(|B|*|F|))
|B| = sqrt (0.175^2 + (-0.256)^2) = 0.310
|F| = 10^-3*sqrt (7.60^2 + (-5.20)^2) = 9.209*10^-3
theta = arccos (2.66*10^-3/(0.310*9.209*10^-3))
theta = direction between B and F = 21.288 deg = 21.3 deg
Let me know if you've any query.