In: Statistics and Probability
Run two regressions using Excel from the data below. Find the following information: 1. estimated regression equations for both regressions 2. both coefficients of determination. 3. significance of each independent variable 4.Report the significance of both models. 5.Predict y for a fictitious set of x values for both
Years | Weekend | Daily Tour Income | Daily Gross Revenue | Number of Tourists |
1 | Friday | 3378 | 4838.95 | 432 |
1 | Saturday | 1198 | 3487.78 | 139 |
1 | Sunday | 3630 | 4371.3 | 467 |
2 | Friday | 4550 | 6486.48 | 546 |
2 | 2467 | 3437.39 | 198 | |
2 | Sunday | 3593 | 4571.43 | 452 |
3 | Friday | 898 | 2515.15 | 119 |
3 | Saturday | 2812 | 5462.11 | 342 |
3 | Sunday | 2650 | 5498.89 | 321 |
4 | Friday | 3230 | 5071.14 | 402 |
4 | Saturday | 4798 | 8051.43 | 523 |
4 | Sunday | 3253 | 4291.95 | 353 |
5 | Friday | 2848 | 4545 | 347 |
5 | Saturday | 4632 | 8865.01 | 534 |
5 | Sunday | 3767 | 4710.64 | 412 |
6 | Friday | 4499 | 10752.74 | 529 |
6 | Saturday | 3868 | 6435.63 | 422 |
6 | Sunday | 2489 | 3389.37 | 288 |
7 | Friday | 3448 | 6129.58 | 367 |
7 | Saturday | 3612 | 7357.12 | 406 |
7 | Sunday | 1937 | 2121.76 | 216 |
8 | Friday | 2548 | 4738.86 | 294 |
8 | Saturday | 2833 | 4141.98 | 317 |
8 | Sunday | 2214 | 4878.35 | 284 |
9 | Friday | 1520 | 4102.49 | 169 |
9 | Saturday | 4322 | 8639.55 | 462 |
9 | Sunday | 1833 | 3946.71 | 203 |
10 | Friday | 2271.63 | 4236.31 | 235 |
10 | Saturday | 2407.88 | 5613.27 | 266 |
10 | Sunday | 1772.17 | 5580.17 | 182 |
11 | Friday | 1494 | 3833.52 | 177 |
11 | Saturday | 1998 | 3986.57 | 213 |
11 | Sunday | 1388 | 2721.56 | 165 |
12 | Friday | 1925 | 3952.19 | 190 |
12 | Saturday | 2695 | 6281.3 | 243 |
12 | Sunday | 1525 | 3356.14 | 172 |
13 | Friday | 1725 | 3822.59 | 187 |
13 | Saturday | 2450 | 4141.75 | 253 |
13 | Sunday | 1407.5 | 3312.41 | 173 |
14 | Friday | 2394 | 4571.5 | 242 |
14 | Saturday | 3012 | 6363.3 | 311 |
14 | Sunday | 2058 | 3502.22 | 239 |
15 | Friday | 2427 | 5881.13 | 267 |
15 | Saturday | 3189 | 10409.13 | 336 |
15 | Sunday | 2109 | 4955.05 | 178 |
16 | Friday | 2244 | 4347.41 | 184 |
16 | Saturday | 3195 | 4935.17 | 274 |
16 | Sunday | 1017 | 3486.27 | 114 |
17 | Friday | 3470 | 6290.99 | 325 |
17 | Saturday | 5323 | 13132.55 | 478 |
17 | Sunday | 2345 | 5014.45 | 242 |
18 | Friday | 1671 | 2740.23 | 177 |
18 | Saturday | 2321.94 | 4423.31 | 246 |
18 | Sunday | 1542 | 2650.48 | 182 |
Analysis
regression 1:
1)
regression equation:
Daily Gross Revenue = 1408.52 + 12.68*number of
tourists
2)
R^2 = 48.91%
3)
Ho: beta1 is not significant
h1: beta1 is significant
With t=7.05, p<5%, I reject ho and conclude that beta1 is
significant.
4)
Ho: model is not significant
h1: model is significant
With F=49.79, p<5%, I reject ho and conclude that the model is
significant.
5)
when x= 119,
predicted Y = 1408.52 + 12.68*119 = 2917.44
regression 2:
1)
regression equation:
Daily Gross Revenue = 748.65179 + 1.6362*Daily Tour
Income
2)
R^2 = 62.707%
3)
Ho: beta1 is not significant
h1: beta1 is significant
With t=9.35, p<5%, I reject ho and conclude that beta1 is
significant.
4)
Ho: model is not significant
h1: model is significant
With F=87.43, p<5%, I reject ho and conclude that the model is
significant.
5)
when x= 3012,
predicted Y = 748.65179 + 1.6362*3012 = 5676.88619
procedure
data -> data analysis -> regression
regression 1: dependent variable: Daily Gross Revenue
independent variable: Number of Tourists
regression 2: dependent variable: Daily Gross Revenue
independent variable: Daily Tour Income
output
regression 1:
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.699382402 | |||||||
R Square | 0.489135744 | |||||||
Adjusted R Square | 0.479311431 | |||||||
Standard Error | 1543.231194 | |||||||
Observations | 54 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 1 | 118573929.8 | 1.19E+08 | 49.78829188 | 4.02752E-09 | |||
Residual | 52 | 123841250.9 | 2381563 | |||||
Total | 53 | 242415180.7 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 1408.526138 | 566.125925 | 2.488009 | 0.016088648 | 272.5113593 | 2544.541 | 272.5114 | 2544.541 |
Number of Tourists | 12.68245322 | 1.797378968 | 7.056082 | 4.02752E-09 | 9.075748453 | 16.28916 | 9.075748 | 16.28916 |
regression 2:
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.791878228 | |||||||
R Square | 0.627071127 | |||||||
Adjusted R Square | 0.619899418 | |||||||
Standard Error | 1318.533714 | |||||||
Observations | 54 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 1 | 152011560.6 | 1.52E+08 | 87.43677682 | 1.00186E-12 | |||
Residual | 52 | 90403620.06 | 1738531 | |||||
Total | 53 | 242415180.7 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 748.6517999 | 500.552028 | 1.495652 | 0.140789091 | -255.7793278 | 1753.083 | -255.779 | 1753.083 |
Daily Tour Income | 1.636240094 | 0.174984653 | 9.350763 | 1.00186E-12 | 1.285107699 | 1.987372 | 1.285108 | 1.987372 |