Question

In: Physics

An insulated tank is divided into two parts by a partition as shown in the figure....

An insulated tank is divided into two parts by a partition as shown in the figure. One part of the tank contains 2.5 kg of compressed liquid water at 60°C and 600 kPa while the other part is evacuated. The partition is now removed, and the water expands to fill the entire tank. Determine the final temperature of the water and the volume of the tank for a final pressure of 3 kPa. (Round the final temperature to two decimal places and round the final volume to three decimal places.)

Solutions

Expert Solution

I hope you understood the problem and got your answers, If yes rate me!! or else comment for a better solutions


Related Solutions

A rigid insulated tank is initially divided into two sections by a partition. One side contains...
A rigid insulated tank is initially divided into two sections by a partition. One side contains 1.0 kg of saturated-liquid water initially at 6.0 MPa, and the other side is evacuated. The partition is broken, and the fluid expands into the entire container. The total volume is such that the final equilibrium pressure is 3.0 MPa. Determine a) the initial volume of the saturated liquid in liters, b) the total volume of the entire tank in liters,
4.17 A rigid insulated tank is divided into two parts, one that contains 1 kg of...
4.17 A rigid insulated tank is divided into two parts, one that contains 1 kg of steam at 10 bar, 200 °C, and one that contains 1 kg of steam at 20 bar, 800 °C. The partition that separates the two compartments is removed and the system is allowed to reach equilibrium. What is the entropy generation? This is the problem in the book Fundamentals of Chemical Engineering Thermodynamics 1st edition. In the solution, it says first obtain volume and...
A piece of insulated wire is shaped into a figure eight as shown in the figure...
A piece of insulated wire is shaped into a figure eight as shown in the figure below. For simplicity, model the two halves of the figure eight as circles. The radius of the upper circle is 4.00 cm and that of the lower circle is 8.00 cm. The wire has a uniform resistance per unit length of 7.00 Ω/m. A uniform magnetic field is applied perpendicular to the plane of the two circles, in the direction shown. The magnetic field...
Water flows steadily from an open tank as shown in the figure. (Figure 1) The elevation...
Water flows steadily from an open tank as shown in the figure. (Figure 1) The elevation of point 1 is 10.0m , and the elevation of points 2 and 3 is 2.00 m . The cross-sectional area at point 2 is 4.80x10^-2m ; at point 3, where the water is discharged, it is 1.60?10^?2m. The cross-sectional area of the tank is very large compared with the cross-sectional area of the pipe. Part A Assuming that Bernoulli's equation applies, compute the...
Water flows steadily from an open tank as shown in the figure
Water Flowing from a Tank Water flows steadily from an open tank as shown in the figure. (Figure 1) The elevation of point 1 is \(10.0 \mathrm{~m},\) anc the elevation of points 2 and 3 is \(2.00 \mathrm{~m}\). The crosssectional area at point 2 is \(4.80 \times 10^{-2} \mathrm{~m}^{2} ;\) at point 3 where the water is discharged, it is \(1.60 \times 10^{-2} \mathrm{~m}^{2}\). The cross-sectional area of the tank is very large compared with the cross-sectional area of the...
Water flows steadily from an open tank as shown in the figure.
Water flows steadily from an open tank as shown in the figure. (Figure 1) The elevation of point 1 is 10.0 m, and the elevation of points 2 and 3 is 2.00 m. The cross-sectional area at point 2 is 4.80 × 10-2m2; at point 3, where the water is discharged, it is 1.60 ×  10-2m2. The cross-sectional area of the tank is very large compared with the cross-sectional area of the pipe.Part BWhat is the gauge pressure Pgauge at point...
​Two concentric spheres are shown in the figure below.
Two concentric spheres are shown in the figure below. The inner sphere is a solid conductor and carries a charge of +5.00 μC uniformly distributed over its outer surface. The outer sphere is a conducting shell that carries a net charge of -8.00 μC. No other charges are present. The radii shown in the figure have the values R1 = 10.0cm, R2 = 20.0cm, and R3 = 30.0 cm. (a) (10 points) Find the total excess charge on the inner and...
A complex is divided into two​ parts: Section A and Section B. The plaintiffs in a...
A complex is divided into two​ parts: Section A and Section B. The plaintiffs in a lawsuit claimed that white potential renters were steered to section​ A, while black renters were steered to section B. The table displays the locations of recently rented apartments. Do you think there is evidence of a racial​ bias? Assume the conditions for inference are satisfied. Complete parts a through c. white black Total Section A 75 14 89 Section B 81 26 107 Total...
Nitrogen at 500 KPa, 500K is in a 1m3 insulated tank connected to a pipe with...
Nitrogen at 500 KPa, 500K is in a 1m3 insulated tank connected to a pipe with a value to a second insulated initially empty tank of 0.5m3. The value is opened and the nitrogen fills both tanks. Find the final temperature, pressure and the entropy generation this process causes.(the gas constant of nitrogen is R=0.2968 KJ/Kg?K)
An insulated, rigid tank whose volume is 0.5 m3 is connected by a valve to a...
An insulated, rigid tank whose volume is 0.5 m3 is connected by a valve to a large vessel holding steam at 40 bar, 480°C. The tank is initially evacuated. The valve is opened only as long as required to fill the tank with steam to a pressure of 20 bar. Determine: (a) the final temperature of the steam in the tank, in °C, the final mass of the steam in the tank, in kg, and (b) the amount of entropy...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT