Question

In: Physics

What is the direction of the magnetic field of a straight, current-carrying wire?

What is the direction of the magnetic field of a straight, current-carrying wire?

Solutions

Expert Solution

Direction of magnetic field.

The magnetic field lines due to straight conductor carrying current are in the form of concentric circles with the conductor as centre, lying in a plane perpendicular to the straight conductor. The direction of magnetic field lines is anticlockwise, if the current flows from A to B in the straight conductor Fig. 1(a) and is clockwise if the current flows from B to A in the straight conductor Fig. 1(b). The direction of magnetic field lines is given by Right Hand Thumb rule or maxwell's cork screw rule

Right hand thumb rule

According to this rule, if we imagine the linear wire conductor to be held in the grip of the right hand so that the thumb points in the direction of current, then the curvature of the fingers around the conductor will represent the direction of magnetic field lines, Fig. 2(a) and (b).

Maxwell's cork serew rule

According to this rule, if we imagine a right handed screw placed along the current carrying linear wire conductor, rotated such that the screw moves in the direction of flow of current, then the direction of rotation of the thumb gives the direction of magnetic lines of force. This rule is illustrated in Fig. 2(c)

If any doubt please mention in comment box


Related Solutions

The magnetic field at a distance ro from a long straight wire carrying a current I...
The magnetic field at a distance ro from a long straight wire carrying a current I is given by B=u0I/2PI ro . For the statements below, circle the word or phrase that correctly completes the sentence. A) For a fixed current of 3.00 A in the wire, the magnetic field sensed by a Hall probe will _________________ if the distance r0is changed from 0.6 cm to 1.2 cm. (double, triple, reduce to half, reduce by 0.6 mT) B) If the...
The magnetic field 38.0 cm away from a long, straight wire carrying current 4.00 A is...
The magnetic field 38.0 cm away from a long, straight wire carrying current 4.00 A is 2110 nT. (a) At what distance is it 211 nT? 380 cm (b) At one instant, the two conductors in a long household extension cord carry equal 4.00-A currents in opposite directions. The two wires are 3.00 mm apart. Find the magnetic field 38.0 cm away from the middle of the straight cord, in the plane of the two wires. 16.6 nT (c) At...
The magnetic field 39.0 cm away from a long, straight wire carrying current 4.00 A is...
The magnetic field 39.0 cm away from a long, straight wire carrying current 4.00 A is 2050 nT. (a) At what distance is it 205 nT? cm (b) At one instant, the two conductors in a long household extension cord carry equal 4.00-A currents in opposite directions. The two wires are 3.00 mm apart. Find the magnetic field 39.0 cm away from the middle of the straight cord, in the plane of the two wires. nT (c) At what distance...
The magnetic field 41.0 cm away from a long, straight wire carrying current 4.00 A is...
The magnetic field 41.0 cm away from a long, straight wire carrying current 4.00 A is 1950 nT. (a) At what distance is it 195 nT? (b) At one instant, the two conductors in a long household extension cord carry equal 4.00-A currents in opposite directions. The two wires are 3.00 mm apart. Find the magnetic field 41.0 cm away from the middle of the straight cord, in the plane of the two wires. How far is the point of...
The magnetic field 44.0 cm away from a long, straight wire carrying current 3.00 A is...
The magnetic field 44.0 cm away from a long, straight wire carrying current 3.00 A is 1360 nT. (a) At what distance is it 136 nT? (No Response) cm (b) At one instant, the two conductors in a long household extension cord carry equal 3.00-A currents in opposite directions. The two wires are 3.00 mm apart. Find the magnetic field 44.0 cm away from the middle of the straight cord, in the plane of the two wires. (No Response) nT...
Create a diagram of a current-carrying wire in a magnetic field. Draw the field lines and...
Create a diagram of a current-carrying wire in a magnetic field. Draw the field lines and explain how the direction of force acting on the wire is determined. #- Create a sketch of the experiment Michael Faraday performed, label all the parts, and write a brief explanation of how motion is created. thank you
A long straight wire carrying a current I = 1.4 amps flowing in the +y direction...
A long straight wire carrying a current I = 1.4 amps flowing in the +y direction has a rectangular wire to its right. The length of the wire (parallel to the straight wire) is .7 m and its width is .4 m. The left side of the rectangular wire is originally .5 meters away from the straight wire. A force of 8 Newtons to the right is applied to the rectangular wire which is initially at rest. Assume the resistance...
True/False 1) A wire carrying current due east in a magnetic field is deflected due north....
True/False 1) A wire carrying current due east in a magnetic field is deflected due north. The magnetic field must have a component that points into the ground 2) The self-inductance of a solenoid depends on the geometry of the solenoid and is independent of the current flowing through it 3) A horizontal bar that is oriented east to west is pulled vertically upward through a magnetic field that points due north. The east end of the bar is at...
A long straight wire carries a current of 8 A. a) In what direction does the...
A long straight wire carries a current of 8 A. a) In what direction does the produced magnetic field point in the neighborhood of the wire? b) Use Amp`ere’s Law to find what is the magnitude of ~ B at 5 mm from the wire? c) A second current carrying wire is placed parallel 8 cm away and experiences an attractive force per unit length of 50 µN/m. What is the current (and its direction) in the second wire? d)...
1. State the right-hand rule for the magnetic field lines from a current-carrying wire. 2. You’ve...
1. State the right-hand rule for the magnetic field lines from a current-carrying wire. 2. You’ve got magnetic field lines making circles around a current-carrying wire. How do you find the magnetic field vectors? 3. How do you find the direction of the magnetic field at the center of a current-carrying loop of wire? 4. In Ampere’s law, how do you determine the sign of currents for calculating Iencl?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT