Question

In: Physics

A long straight wire carrying a current I = 1.4 amps flowing in the +y direction...

A long straight wire carrying a current I = 1.4 amps flowing in the +y direction has a rectangular wire to its right. The length of the wire (parallel to the straight wire) is .7 m and its width is .4 m. The left side of the rectangular wire is originally .5 meters away from the straight wire. A force of 8 Newtons to the right is applied to the rectangular wire which is initially at rest. Assume the resistance of the rectangular wire is 12 ohms and its mass is 2 kg. Find the Emf, the current and the force on the rectangular wire due to the straight wire when its left side has reached 2.0 meters away from the straight wire. What would happen if instead of the rectangular wire moving, the current in the straight wire was changing according to the equation I = .3t2 amps flowing in the +y direction? Find the Emf, the current and the force on the rectangular wire due to the straight wire after 6 seconds.

Answers Should Be:

Emf = -56.5 nVolts, I = 4.71 nAmps clockwise, Ftotal = 7.69 x 10-17 N to the left

Emf =.296 μVolts, I = .0247 μAmps counterclockwise, Ftotal = .0332 pN to the right

Solutions

Expert Solution


Related Solutions

A 100 meter long wire carrying a current of .4 amps into the board is at...
A 100 meter long wire carrying a current of .4 amps into the board is at (-5, 0) meters and another 100-m long wire carrying a current of .6 amps out of the board is at (+3, 0) meters. a) Find the Magnetic Force between these charges. b) Where can a third wire be placed so that it experiences no force? Where can it be placed on the x-axis so it experiences a force of magnitude 5 μN (the wire...
The magnetic field at a distance ro from a long straight wire carrying a current I...
The magnetic field at a distance ro from a long straight wire carrying a current I is given by B=u0I/2PI ro . For the statements below, circle the word or phrase that correctly completes the sentence. A) For a fixed current of 3.00 A in the wire, the magnetic field sensed by a Hall probe will _________________ if the distance r0is changed from 0.6 cm to 1.2 cm. (double, triple, reduce to half, reduce by 0.6 mT) B) If the...
Three long straight parallel wires are each carrying a steady current I in the same direction....
Three long straight parallel wires are each carrying a steady current I in the same direction. They are equidistant from each other with separation d. What force per unit length does one wire experience due to the other two?
A long straight wire carries a current of 8 A. a) In what direction does the...
A long straight wire carries a current of 8 A. a) In what direction does the produced magnetic field point in the neighborhood of the wire? b) Use Amp`ere’s Law to find what is the magnitude of ~ B at 5 mm from the wire? c) A second current carrying wire is placed parallel 8 cm away and experiences an attractive force per unit length of 50 µN/m. What is the current (and its direction) in the second wire? d)...
A long, straight wire carrying a current of 3.00 A moves with a constant speed v...
A long, straight wire carrying a current of 3.00 A moves with a constant speed v to the right. A 5-turn circular coil of diameter 1.25 cm, and resistance of 3.25 µΩ, lies stationary in the same plane as the straight wire. At some initial time, the wire is at a distance d = 19.5 cm from the center of the coil. 4.55 s later, the wire is at a distance 2d from the center of the coil. What is...
A long, straight wire carrying a current I1 is placed on a horizontal table in front...
A long, straight wire carrying a current I1 is placed on a horizontal table in front of you and the direction of the current points +x axis. The magnetic field produced by the current I1 at a point 5 cm above the wire is 0.2 T. A second parallel wire carrying a current I2 = 3I1 is placed 10 cm above the first wire and the direction of the current also points +x axis. What is the magnitude of the...
A long straight wire runs along the y axis and carries a current of 1.80 A...
A long straight wire runs along the y axis and carries a current of 1.80 A in the +y direction. Determine the magnitude and direction of the magnetic field along the line. x = 21.0 cm. Magnitude ?? T Direction ??? ( +.- )(I,J,K) ?? Two long current-carrying wires run parallel to each other and are separated by a distance of 2.00 cm. If the current in one wire is 1.45 A and the current in the other wire is...
In the figure below, the current in the long, straight wire is
In the figure below, the current in the long, straight wire isI1 = 8.40 Aand the wire lies in the plane of the rectangular loop, which carries a currentI2 = 10.0 A.The dimensions in the figure arec = 0.100 m,a = 0.150 m,andℓ = 0.720 m.Find the magnitude and direction of the net force exerted on the loop by the magnetic field created by the wire.magnitude  µNdirection---Select--- upward downward to the left to the right into the page out of the...
when the current[ =Ⅰ ] flowing through the wire in the direction of the z-axis, magnetic...
when the current[ =Ⅰ ] flowing through the wire in the direction of the z-axis, magnetic vector potential is following that A = ez[μⅠ*ln(1/ρ)/2π] show that magnetic field B is same as B = eφ[μI/2πρ]
You are looking at a current carrying wire. The current is heading straight for you toward your eye.
You are looking at a current carrying wire. The current is heading straight for you toward your eye. The magnetic field lines and field strength are best described by:The field lines point in away from wire, and drop off as \(1 / r^{2}\)The field lines wrap around the wire CCW and drop off as \(1 / \mathrm{r}\)The field lines wrap around the wire CCW and drop off as \(1 / r^{2}\)The field lines point in toward wire, and drop off...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT