In: Other
Ice balls of 10 mm diameter at – 30°C are exposed to an air current at 15°C with a convection heat transfer coefficient of 200 W/m2 -K. Determine the time when the surface layer will begin to melt. Also determine the center temperature. Use the following property values: density = 920 kg/m3 , specific heat 2040 J/kg-K, thermal conductivity = 2.00 W/m-K.
Ans
Given data
density ρ = 920 kg/m3
specific heat Cp = 2040 J/kg-K
thermal conductivity k = 2.00 W/m-K
Dia D = 10 mm x 1m/1000mm = 0.010 m
Radius R = 0.01/2 = 0.005 m
Initial temperature Ti = - 30°C
Air temperature Ta = 15°C
heat transfer coefficient h = 200 W/m2 -K
Melting temperature T = 0°C
Biot number Bi = hR/k
= 200 W/m2-K x 0.005 m / 2.00 W/m-K
= 0.5
r/R = 1
From transient conduction and Heisler charts we get
(T - Ta) / (To - Ta) = 0.78
We can write above equation
(T - Ta) / (Ti - Ta) = (To - Ta) (T - Ta) / (Ti - Ta) (To - Ta)
(0 - 15)/(-30 - 15) = (To - Ta)*0.78 / (Ti - Ta)
(To - Ta) / (Ti - Ta) = 0.4274
1/Bi = 2
From Heisler charts
Fourier number = 0.78
ατ/R² = 0.78
τ = 0.78 x R² / α
Thermal diffusivity α = k/(Cp x ρ)
= 0.78 x R² x Cp x ρ/ k
= 0.78 x 0.005² m² x 2040 J/kg-K x 920 kg/m³ / 2 W/m-K
= 18.30 s
For center temperature
(To - Ta) / (Ti - Ta) = 0.4274
(To - 15) / (-30 - 15) = 0.4274
To = - 19.233 + 15
Center temperature To = - 4.23°C