Question

In: Other

Steam at 10 bar and 330°C is fed to an adiabatic turbineat a mass flow rateof...

Steam at 10 bar and 330°C is fed to an adiabatic turbineat a mass flow rateof 5kg/s

. The output stream is saturated steam at 1.1 bar. The inlet steam flows

through a 15 cm diameter pipe and the exit steam discharges through a 20 cm diameter

pipe.

a)

Calculate the velocity of the input and output streams in m/s.

b)

The power generated by the turbine in kW.

Solutions

Expert Solution


Related Solutions

Steam at 10 bar and 330°C is fed to an adiabatic turbine at a mass flow...
Steam at 10 bar and 330°C is fed to an adiabatic turbine at a mass flow rate of m = 5 kg/s. The output stream is saturated steam at 1.1 bar. The inlet steam flows through a 15 cm diameter pipe and the exit steam discharges through a 20 cm diameter pipe. a) Calculate the velocity of the input and output streams in m/s. b) The power generated by the turbine in kW
Steam is compressed by an adiabatic compressor from 3 bar and 160°C to 10 bar and...
Steam is compressed by an adiabatic compressor from 3 bar and 160°C to 10 bar and 350°C at a rate of 1.30 kg/s. The power input to the compressor is 626 kW 481.6 kW 370.5 kW 284.8
A mass flow rate of 2 kg/s of steam is expanded in an adiabatic turbine with...
A mass flow rate of 2 kg/s of steam is expanded in an adiabatic turbine with an isentropic efficiency of 0.92. The steam enters at 3 MPa and 400 C and leaves at 30 kPa. Determine how much power the turbine is producing. Express your result in kW. (Sol: 1649 kW)
Steam at 400°C and 40 bar flows steadily through an adiabatic turbine at a volumetric flowrate...
Steam at 400°C and 40 bar flows steadily through an adiabatic turbine at a volumetric flowrate of 5,000 m3/h. The steam leaving the turbine at 1 bar is then cooled at constant pressure in a condenser to 25°C. The rate of transfer from the condenser is 50 MW. Calculate the power output generated by the turbine (MW). Clearly state assumptions (if any) and reference state.
An adiabatic steam turbine is fed by 2.20 lbm/s, at a velocity of 100 ft/s
An adiabatic steam turbine is fed by 2.20 lbm/s, at a velocity of 100 ft/s. The turbine generates an output of 1507 hp. The specific enthalpy of the water at the turbine outlet is 1007 Btu/lbm. The exit velocity is 600 ft/s. Determine the specific enthalpy of the steam at the turbine inlet.
An old storage tank of “46” m3 stores steam at 6000 kPa and 330 °C. A...
An old storage tank of “46” m3 stores steam at 6000 kPa and 330 °C. A crack develops at the top wall of the tank and steam starts to leak out to the atmosphere. An engineer realizes the problem on time and stops the leak when the pressure inside the tank is below 4000 kPa. If the leak is assumed to be adiabatic and reversible, a) What is the final temperature of the steam remained in the tank? (10 points)...
If the steam is now expanded from 10 bar and 500 degree Celsius to 0.04 bar...
If the steam is now expanded from 10 bar and 500 degree Celsius to 0.04 bar with isentropic efficiency of 90%, in what respects does the ideal gas assumption become invalid. Compare the ideal gas and steam table results for the exit temperature and the work output
Steam at 4 MPa and 350°C is expanded in an adiabatic turbine to 120 kPa. What...
Steam at 4 MPa and 350°C is expanded in an adiabatic turbine to 120 kPa. What is the isentropic efficiency of this turbine if the steam is exhausted as a saturated vapor?
10 kg of steam is contained at 10 bar in a rigid vessel of volume 2.275...
10 kg of steam is contained at 10 bar in a rigid vessel of volume 2.275 m3. The vessel is cooled until the pressure in the vessel is 7 bar. Calculate the amount of heat removed from the steam.
An adiabatic steam power plant turbine receives 500kg/s in steady flow at 8MPa and 500 degrees...
An adiabatic steam power plant turbine receives 500kg/s in steady flow at 8MPa and 500 degrees C(state 1), the steam exits at 15kPa with quality of 0.95(state 2 actual). Find a) isentropic power output of the turbine using listed pressures, b) actual power output of the turbine, c) isentropic efficiency of the turbine, d) s2-s1
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT