In: Operations Management
Consider the two variables service quality and customer satisfaction. Service quality is independent variable and customer satisfaction is dependent variable. Perform regression analysis using SPSS and explain the results.
PLEASE USE SPSS ONLY AND PASTE THE OUTPUT OF SPSS. DO NOT USE EXCEL OR ANY OTHER SOFTWARE. SPSS ONLY PLEASE.
SERVICE QUALITY |
CUSTOMER SATISFACTION |
2 |
1 |
3 |
2 |
4 |
4 |
5 |
7 |
6 |
6 |
7 |
7 |
8 |
9 |
6 |
11 |
6 |
9 |
4 |
5 |
5 |
4 |
6 |
7 |
2 |
3 |
10 |
11 |
8 |
5 |
9 |
6 |
11 |
2 |
11 |
4 |
13 |
8 |
2 |
8 |
4 |
8 |
3 |
9 |
1 |
1 |
2 |
2 |
2 |
3 |
1 |
4 |
2 |
5 |
4 |
5 |
5 |
6 |
6 |
3 |
7 |
4 |
2 |
4 |
2 |
5 |
2 |
6 |
1 |
4 |
4 |
4 |
13 |
11 |
12 |
11 |
1 |
2 |
2 |
2 |
4 |
4 |
4 |
4 |
6 |
6 |
7 |
5 |
3 |
4 |
1 |
2 |
3 |
3 |
4 |
5 |
6 |
6 |
7 |
7 |
2 |
2 |
3 |
3 |
1 |
4 |
5 |
4 |
5 |
1 |
REGRESSION ANALYSIS OUTPUT EXPLANATION
Model Summary |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Model |
R |
R Square |
Adjusted R Square |
Std. An error of the Estimate |
Change Statistics |
Durbin-Watson |
||||||||||||||||||||||||||||||||||||||||||||||||||||
R Square Change |
F Change |
df1 |
df2 |
Sig. F Change |
||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 |
.558a |
.312 |
.298 |
2.684 |
.312 |
23.527 |
1 |
52 |
.000 |
.932 |
||||||||||||||||||||||||||||||||||||||||||||||||
a. Predictors: (Constant), SATISFACTIONQUALITY |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
b. Dependent Variable: CUSTOMER SATISFACTION Analysis- By looking at the above regression table, it can be said that there is a significant relationship between satisfaction quality and customer satisfaction ie. customer satisfaction is dependent on the quality of satisfaction, a customer gets on using a product or service. The value of R represents the correlation value between the dependent and the independent variable. The value of .558 does not represent a high correlation, but a significant correlation. The R square value depicts that 31.2 % of the variation in customer satisfaction is explained by the satisfaction quality. The value of Durbin Watson shows that there is autocorrelation between the residuals.
This above ANOVA table predicts that the regression table significantly predicts the relation between satisfaction quality and customer satisfaction.
The model of the equation is Customer satisfaction = 1.515 + .664 (Satisfaction Quality) |