Question

In: Math

Consider the following data for a dependent variable y and two independent variables, x1and x2. x...

Consider the following data for a dependent variable y and two independent variables, x1and x2.

x 1 x 2 y
29 13 94
47 10 109
24 17 113
50 16 178
40 6 95
52 20 176
75 7 171
37 13 118
59 14 142
77 17 211

Round your all answers to two decimal places. Enter negative values as negative numbers, if necessary.

a. Develop an estimated regression equation relating y to x1.

ŷ =  +  x1

Predict y if x1= 35.

ŷ =

b. Develop an estimated regression equation relating y to x2.

ŷ =  +  x2

Predict y if x2= 25.

ŷ =

c. Develop an estimated regression equation relating y to x1and x2.

ŷ =  +  x1 +  x2

Predict y if x1= 35 and x2= 25.

ŷ =

Solutions

Expert Solution

a)

using excel data analysis tool for regression,steps are: write data>menu>data>data analysis>regression>enter required labels>ok> and following o/p is obtained

Regression Statistics
Multiple R 0.8107
R Square 0.6572
Adjusted R Square 0.6143
Standard Error 25.4010
Observations 10
ANOVA
df SS MS F Significance F
Regression 1 9894.4 9894.4 15.34 0.0044
Residual 8 5161.7 645.2
Total 9 15056.1
Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 48.9812 24.7606 1.9782 0.0833 -8.1169 106.07926
X 1.8718 0.4780 3.9160 0.0044 0.7696 2.9741

Ŷ =   48.98 +   1.87 *x1

Predicted Y at X=   35   is                  
Ŷ =   48.98 +   1.87 *   35   =   114.50

b)

Regression Statistics
Multiple R 0.4588
R Square 0.2105
Adjusted R Square 0.1118
Standard Error 38.5461
Observations 10
ANOVA
df SS MS F Significance F
Regression 1 3169.7 3169.7 2.13 0.1823
Residual 8 11886.4 1485.8
Total 9 15056.1
Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 85.5133 39.7013 2.1539 0.0634 -6.0380 177.06457
X 4.1494 2.8409 1.4606 0.1823 -2.4017 10.7005

Ŷ =   85.51 +   4.15 *x2

Predicted Y at X=   25   is                  
Ŷ =   85.51 +   4.15 *   25   =   189.25

c)

using excel data analysis tool for regression,steps are: write data>menu>data>data analysis>regression>enter required labels>ok> and following o/p is obtained

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.955483
R Square 0.912948
Adjusted R Square 0.888076
Standard Error 13.68348
Observations 10
ANOVA
df SS MS F Significance F
Regression 2 13745.44 6872.719 36.70587 0.000195
Residual 7 1310.663 187.2376
Total 9 15056.1
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept -15.2058 19.44809 -0.78186 0.459918 -61.1932 30.78167 -61.1932 30.78167
x 1 1.938323 0.25791 7.515514 0.000136 1.328463 2.548182 1.328463 2.548182
x 2 4.58105 1.01012 4.535155 0.002683 2.192496 6.969603 2.192496 6.969603

ŷ = -15.21+ 1.94*x1 + 4.58 x2

if x1= 35 and x2= 25

ŷ = -15.21+ 1.94*35 + 4.58 *25 = 167.16(answer)


Related Solutions

Consider the following data for a dependent variable y and two independent variables, x2 and x1....
Consider the following data for a dependent variable y and two independent variables, x2 and x1. x1 x2 y 30 12 94 46 10 109 24 17 113 50 17 179 41 5 94 51 19 175 75 8 171 36 12 118 59 13 143 77 17 212 Round your all answers to two decimal places. Enter negative values as negative numbers, if necessary. a. Develop an estimated regression equation relating y to x1 . Predict y if x1=45....
Consider the following data for a dependent variable y and two independent variables, x1 and x2.
You may need to use the appropriate technology to answer this question. Consider the following data for a dependent variable y and two independent variables, x1 and x2. x1 x2 y 30 12 93 47 10 108 25 17 112 51 16 178 40 5 94 51 19 175 74 7 170 36 12 117 59 13 142 76 16 211 The estimated regression equation for these data is ŷ = −18.89 + 2.02x1 + 4.74x2. Here, SST = 15,276.0,...
Consider the following data for a dependent variable y and two independent variables, x1 and x2....
Consider the following data for a dependent variable y and two independent variables, x1 and x2. x1 x2 y 30 12 94 47 10 108 25 17 112 51 16 178 40 5 94 51 19 175 74 7 170 36 12 117 59 13 142 76 16 209 The estimated regression equation for these data is ŷ = −17.02 + 1.99x1 + 4.70x2. Here, SST = 14,902.9, SSR = 13,773.1, sb1 = 0.2470, and sb2 = 0.9480. (1a) Test...
Consider the following data for a dependent variable y and two independent variables, x1 and x2....
Consider the following data for a dependent variable y and two independent variables, x1 and x2. x1 x2 y 30 13 95 46 10 108 25 18 113 50 16 179 40 5 95 51 20 176 74 7 170 36 12 117 59 13 142 77 16 211 Round your all answers to two decimal places. Enter negative values as negative numbers, if necessary. a. Develop an estimated regression equation relating y to x1. ŷ =_________ +___________ x1 Predict...
Consider the following data for a dependent variable y and two independent variables, x1 and x2....
Consider the following data for a dependent variable y and two independent variables, x1 and x2. x1 x2 y 30 12 95 47 10 108 25 17 112 51 16 178 40 5 94 51 19 175 74 7 170 36 12 117 59 13 142 76 16 212 The estimated regression equation for these data is ŷ = −18.52 + 2.01x1 + 4.75x2. Here, SST = 15,234.1, SSR = 14,109.8, sb1 = 0.2464, and sb2 = 0.9457. (a)Test for...
Consider the following data for a dependent variable and two independent variables, and . x1= 30...
Consider the following data for a dependent variable and two independent variables, and . x1= 30 46 24 50 41 51 74 36 60 77. x2 = 13 11 17 17 6 20 8 12 13 16. y = 95 109 112 178 94 176 170 117 142 212 Round your all answers to two decimal places. Enter negative values as negative numbers, if necessary. a. Develop an estimated regression equation relating to y to x1 . Predict y if...
Suppose we have the following data on variable X (independent) and variable Y (dependent): X Y...
Suppose we have the following data on variable X (independent) and variable Y (dependent): X Y 2 70 0 70 4 130 a.) By hand, determine the simple regression equation relating Y and X. b.) Calculate the R-Square measure and interpret the result. c.) Calculate the adjusted R-Square. d.) Test to see whether X and Y are significantly related using a test on the population correlation. Test this at the 0.05 level. e.) Test to see whether X and Y...
Suppose we have the following data on variable X (independent) and variable Y (dependent): X         Y...
Suppose we have the following data on variable X (independent) and variable Y (dependent): X         Y 2          70 0          70 4          130 Test to see whether X and Y are significantly related using a t-test on the slope of X. Test this at the 0.05 level. Test to see whether X and Y are significantly related using an F-test on the slope of X. Test this at the 0.05 level.
Suppose we have the following data on variable X (independent) and variable Y (dependent): X Y...
Suppose we have the following data on variable X (independent) and variable Y (dependent): X Y 2 70 0 70 4 130 a.) By hand, determine the simple regression equation relating Y and X. b.) Calculate the R-Square measure and interpret the result. c.) Calculate the adjusted R-Square. d.) Test to see whether X and Y are significantly related using a test on the population correlation. Test this at the 0.05 level. e.) Test to see whether X and Y...
Suppose we have the following data on variable X (independent) and variable Y (dependent): X         Y...
Suppose we have the following data on variable X (independent) and variable Y (dependent): X         Y 2          70 0          70 4          130 By hand, determine the simple regression equation relating Y and X. Calculate the R-Square measure and interpret the result. Calculate the adjusted R-Square. Test to see whether X and Y are significantly related using a test on the population correlation. Test this at the 0.05 level. Test to see whether X and Y are significantly related using a...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT