In: Math
Consider the following data for a dependent variable y and two independent variables, x1and x2.
x 1 | x 2 | y |
29 | 13 | 94 |
47 | 10 | 109 |
24 | 17 | 113 |
50 | 16 | 178 |
40 | 6 | 95 |
52 | 20 | 176 |
75 | 7 | 171 |
37 | 13 | 118 |
59 | 14 | 142 |
77 | 17 | 211 |
Round your all answers to two decimal places. Enter negative values as negative numbers, if necessary.
a. Develop an estimated regression equation relating y to x1.
ŷ = + x1
Predict y if x1= 35.
ŷ =
b. Develop an estimated regression equation relating y to x2.
ŷ = + x2
Predict y if x2= 25.
ŷ =
c. Develop an estimated regression equation relating y to x1and x2.
ŷ = + x1 + x2
Predict y if x1= 35 and x2= 25.
ŷ =
a)
using excel data analysis tool for regression,steps are: write data>menu>data>data analysis>regression>enter required labels>ok> and following o/p is obtained
Regression Statistics | ||||||
Multiple R | 0.8107 | |||||
R Square | 0.6572 | |||||
Adjusted R Square | 0.6143 | |||||
Standard Error | 25.4010 | |||||
Observations | 10 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 1 | 9894.4 | 9894.4 | 15.34 | 0.0044 | |
Residual | 8 | 5161.7 | 645.2 | |||
Total | 9 | 15056.1 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 48.9812 | 24.7606 | 1.9782 | 0.0833 | -8.1169 | 106.07926 |
X | 1.8718 | 0.4780 | 3.9160 | 0.0044 | 0.7696 | 2.9741 |
Ŷ = 48.98 + 1.87 *x1
Predicted Y at X= 35
is
Ŷ = 48.98 + 1.87 *
35 = 114.50
b)
Regression Statistics | ||||||
Multiple R | 0.4588 | |||||
R Square | 0.2105 | |||||
Adjusted R Square | 0.1118 | |||||
Standard Error | 38.5461 | |||||
Observations | 10 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 1 | 3169.7 | 3169.7 | 2.13 | 0.1823 | |
Residual | 8 | 11886.4 | 1485.8 | |||
Total | 9 | 15056.1 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 85.5133 | 39.7013 | 2.1539 | 0.0634 | -6.0380 | 177.06457 |
X | 4.1494 | 2.8409 | 1.4606 | 0.1823 | -2.4017 | 10.7005 |
Ŷ = 85.51 + 4.15 *x2
Predicted Y at X= 25
is
Ŷ = 85.51 + 4.15 *
25 = 189.25
c)
using excel data analysis tool for regression,steps are: write
data>menu>data>data analysis>regression>enter
required labels>ok> and following o/p is obtained
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.955483 | |||||||
R Square | 0.912948 | |||||||
Adjusted R Square | 0.888076 | |||||||
Standard Error | 13.68348 | |||||||
Observations | 10 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 2 | 13745.44 | 6872.719 | 36.70587 | 0.000195 | |||
Residual | 7 | 1310.663 | 187.2376 | |||||
Total | 9 | 15056.1 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | -15.2058 | 19.44809 | -0.78186 | 0.459918 | -61.1932 | 30.78167 | -61.1932 | 30.78167 |
x 1 | 1.938323 | 0.25791 | 7.515514 | 0.000136 | 1.328463 | 2.548182 | 1.328463 | 2.548182 |
x 2 | 4.58105 | 1.01012 | 4.535155 | 0.002683 | 2.192496 | 6.969603 | 2.192496 | 6.969603 |
ŷ = -15.21+ 1.94*x1 + 4.58 x2
if x1= 35 and x2= 25
ŷ = -15.21+ 1.94*35 + 4.58 *25 = 167.16(answer)