In: Advanced Math
Find the general solution
1.(1+x2) (d2y/dx2) + x (dy/dx) + ax = 0
2. ρ(dθ/dρ) –2/ρ (dρ/dθ) = 0
3.(dy/dx)2 -4x (dy/dx) +6y = 0
4.y(d2y/dx2) + (dy/dx)2 = (dy/dx)
5.Solve simultaneously:
(dx/dt) + (dy/dt) + y –x = e2t
(d2x/dt2) + (dy/dt) = 3 e2t
6.Using method of variation of parameter, solve: y'' – 8 y' +16 y = 6x e4x