In: Math
Each value represents the number of mistakes (defects) found on a student loan application. Values for 50 consecutive loan applications are given. Calculate the appropriate centerline and 3-sigma control limits for the c-chart, and then plot the data and create a control chart. Does the process appear to be in a state of statistical control? Why or why not?
Upper control limit (UCL) =
Centerline (CL) =
Lower control limit (LCL) =
Process in statistical control?
Acme Company - Daily Output | |||
Day | June | July | August |
1 | 7940 | 7809 | 7401 |
2 | 7952 | 7747 | 7344 |
3 | 7870 | 7869 | 7490 |
4 | 7985 | 7784 | 7488 |
5 | 8015 | 7822 | 7685 |
6 | 8038 | 7839 | 7466 |
7 | 8027 | 7839 | 7511 |
8 | 7990 | 7845 | 7491 |
9 | 7928 | 7872 | 7353 |
10 | 7972 | 7725 | 7521 |
11 | 7981 | 7819 | 7376 |
12 | 7909 | 7852 | 7633 |
13 | 8038 | 7805 | 9542 |
14 | 7972 | 7820 | 7562 |
15 | 8041 | 7773 | 7455 |
16 | 7984 | 7837 | 7686 |
17 | 7978 | 7747 | 7477 |
18 | 7833 | 7776 | 7482 |
19 | 8043 | 7749 | 7603 |
20 | 7972 | 7823 | 7671 |
21 | 7901 | 7806 | 7535 |
22 | 7993 | 7747 | 7360 |
23 | 8014 | 7785 | 7519 |
24 | 7929 | 7778 | 7507 |
25 | 7922 | 7802 | 7597 |
26 | 8025 | 7732 | 7487 |
27 | 7983 | 7849 | 7452 |
28 | 7932 | 7909 | 7407 |
29 | 8069 | 7875 | 7407 |
30 | 7923 | 7734 | 7434 |
31 | 7563 | 7684 |
solution:
Upper control limit (UCL) = mean of means of sample - (3* standard deviation)
Centerline (CL) = mean
Lower control limit (LCL) = mean of means of sample - (3* standard deviation)
Where Each value represents the number of mistakes (defects) found on a student loan application.
std dev |
132.8711 |
between the 11 to 13 given process is out of control because some values are larger than the upper limit .
Thank you..!!
Day | Jun | July | Aug | xbar | xbar bar | LCL | UCL |
1 | 7940 | 7809 | 7401 | 7716.667 | 7778.978 | 7380.365 | 8177.592 |
2 | 7952 | 7747 | 7344 | 7681 | 7781.056 | 7382.442 | 8179.669 |
3 | 7870 | 7869 | 7490 | 7743 | 7784.506 | 7385.892 | 8183.119 |
4 | 7985 | 7784 | 7488 | 7752.333 | 7785.988 | 7387.375 | 8184.601 |
5 | 8015 | 7822 | 7685 | 7840.667 | 7787.235 | 7388.621 | 8185.848 |
6 | 8038 | 7839 | 7466 | 7781 | 7785.179 | 7386.566 | 8183.793 |
7 | 8027 | 7839 | 7511 | 7792.333 | 7785.347 | 7386.733 | 8183.96 |
8 | 7990 | 7845 | 7491 | 7775.333 | 7785.056 | 7386.442 | 8183.669 |
9 | 7928 | 7872 | 7353 | 7717.667 | 7785.478 | 7386.865 | 8184.092 |
10 | 7972 | 7725 | 7521 | 7739.333 | 7788.561 | 7389.947 | 8187.174 |
11 | 7981 | 7819 | 7376 | 7725.333 | 7790.905 | 7392.292 | 8189.518 |
12 | 7909 | 7852 | 7633 | 7798 | 7794.183 | 7395.57 | 8192.797 |
13 | 8038 | 7805 | 9542 | 8461.667 | 7793.982 | 7395.369 | 8192.596 |
14 | 7972 | 7820 | 7562 | 7784.667 | 7756.889 | 7358.276 | 8155.502 |
15 | 8041 | 7773 | 7455 | 7756.333 | 7755.255 | 7356.642 | 8153.868 |
16 | 7984 | 7837 | 7686 | 7835.667 | 7755.188 | 7356.574 | 8153.801 |
17 | 7978 | 7747 | 7477 | 7734 | 7749.822 | 7351.209 | 8148.435 |
18 | 7833 | 7776 | 7482 | 7697 | 7750.952 | 7352.339 | 8149.566 |
19 | 8043 | 7749 | 7603 | 7798.333 | 7755.103 | 7356.489 | 8153.716 |
20 | 7972 | 7823 | 7671 | 7822 | 7751.5 | 7352.887 | 8150.113 |
21 | 7901 | 7806 | 7535 | 7747.333 | 7745.091 | 7346.478 | 8143.704 |
22 | 7993 | 7747 | 7360 | 7700 | 7744.867 | 7346.253 | 8143.48 |
23 | 8014 | 7785 | 7519 | 7772.667 | 7749.852 | 7351.239 | 8148.465 |
24 | 7929 | 7778 | 7507 | 7738 | 7747 | 7348.387 | 8145.613 |
25 | 7922 | 7802 | 7597 | 7773.667 | 7748.286 | 7349.672 | 8146.899 |
26 | 8025 | 7732 | 7487 | 7748 | 7744.056 | 7345.442 | 8142.669 |
27 | 7983 | 7849 | 7452 | 7761.333 | 7743.267 | 7344.653 | 8141.88 |
28 | 7932 | 7909 | 7407 | 7749.333 | 7738.75 | 7340.137 | 8137.363 |
29 | 8069 | 7875 | 7407 | 7783.667 | 7735.222 | 7336.609 | 8133.835 |
30 | 7923 | 7734 | 7434 | 7697 | 7711 | 7312.387 | 8109.613 |
31 | 7928 | 7563 | 7684 | 7725 | 7725 | 7326.387 | 8123.613 |