Question

In: Physics

A 283 g air track glider moving at 0.69 m/s on a 2.4 m long air...

A 283 g air track glider moving at 0.69 m/s on a 2.4 m long air track collides elastically with a 467 g glider at rest in the middle of the horizontal track. The end of the track over which the struck glider moves is not frictionless, and the glider moves with a coefficient of kinetic friciton = 0.02 with respect to the track. Will the glider reach the end of the track? Neglect the length of the gliders.

Solutions

Expert Solution

Let:
m1 be the mass (0.283kg) of the air track glider,
m2 be the mass (0.467kg) of the glider at rest,
u1 be the initial velocity (0.69m/s) of the air track glider,
v1 be the velocity after collision of the air track glider,
v2 be the velocity after collision of the glider initially at rest,
g be the acceleration due to gravity,
u be the coefficient of friction,
s be the distance travelled by the glider initially at rest.

Equating momentum before and after collision:
m1u1 = m1v1 + m2v2 ...(1)

As the collision is elastic, velocity of separation equals velocity of approach:
v2 - v1 = u1 ...(2)

Substituting for v1 from (2) in (1) gives:
m1u1 = m1(v2 - u1) + m2v2
v2 = 2m1u1 / (m1 + m2) ...(3)
v2 = 2 * 0.283 * 0.69 / (0.283 + 0.467)
= 0.52072 m/s.

The retarding friction force on glider is (- um2 g), and its acceleration after collision is therefore ( - ug.)
0 = v2^2 - 2ugs
s = v2^2 / 2ug ...(4)
s = 0.52072^2 / 2 * 0.02 * 9.81
= 0.69 m

The distance to be covered by glider is 1.2 m.
Thus the glider will not reach the end of the 2.4 m. track.

please like


Related Solutions

A 0.140 kg glider is moving to the right on a frictionless, horizontal air track with...
A 0.140 kg glider is moving to the right on a frictionless, horizontal air track with a speed of 0.720 m/s. It has a head-on collision with a 0.302 kg glider that is moving to the left with a speed of 2.13 m/s. Suppose the collision is elastic. a) Find the magnitude of the final velocity of the 0.140 kg glider. Express your answer in meters per second. b) Find the direction of the final velocity of the 0.140 kg...
A 0.158 kg glider is moving to the right on a frictionless, horizontal air track with...
A 0.158 kg glider is moving to the right on a frictionless, horizontal air track with a speed of 0.900 m/s . It has a head-on collision with a 0.297 kg glider that is moving to the left with a speed of 2.30 m/s . Suppose the collision is elastic. A. Find the magnitude of the final velocity of the 0.158 kg glider. B. Find the magnitude of the final velocity of the 0.297 kg glider.
An air-track glider is attached to a spring. The glider is pulled to the right and...
An air-track glider is attached to a spring. The glider is pulled to the right and released from rest at =0 s. It then oscillates with a period of 1.50s and a maximum speed of 50.0 cm/s .What is the amplitude of the oscillation?What is the glider's position a t = 29.0s?
An air-track glider attached to a spring oscillates with a period of 1.50 s . At...
An air-track glider attached to a spring oscillates with a period of 1.50 s . At t=0s the glider is 5.30 cm left of the equilibrium position and moving to the right at 38.5 cm/s . Part A What is the phase constant? Part B What is the phase at t=.05s? Part C What is the phase at t=1s ? Part D What is the phase at t=1.5s?
A billiard ball A moving at a speed of 2.4 m / s bumps into a...
A billiard ball A moving at a speed of 2.4 m / s bumps into a billiard ball B of the same mass, which are at rest. After the impact, A moves at a speed of 1.4 m / s in a direction that forms the angle 50 ◦ with A's original direction of movement. Determine the magnitude and direction of B's ​​velocity vector by the impact. (Answer 1.8 m / s; 36 ◦)
A 1.450 kg air-track glider is attached to each end of the track by two coil springs.
A 1.450 kg air-track glider is attached to each end of the track by two coil springs. It takes a horizontal force of 0.900 N to displace the glider to a new equilibrium position, x= 0.250 m.1. Find the effective spring constant of the system.2. The glider is now released from rest at x= 0.250 m. Find the maximum x-acceleration of the glider.3. Find the x-coordinate of the glider at time t= 0.610T, where T is the period of the...
A 1.03-kg glider on a horizontal air track is pulled by a string at an angle...
A 1.03-kg glider on a horizontal air track is pulled by a string at an angle ?. The taut string runs over a pulley and is attached to a hanging object of mass m = 0.450 kg. Find the tension in the string at the instant the glider is released for h0 = 79.0 cm and ? = 34.0°
a cart of mass of 420 g moving on a frictioless horizontal linear air track at...
a cart of mass of 420 g moving on a frictioless horizontal linear air track at an initial speed of 1.4 m/s undergoes an elastic collision with an initially stationary cart of unknown mass M. after the collision the initial cart moves with a speed pf 0.76 m/s. (a). what is the mass of the cart . b) what is the velocity of the second cart after the collision .
A cart with mass 330 g moving on a frictionless linear air track at an initial...
A cart with mass 330 g moving on a frictionless linear air track at an initial speed of 2.1 m/s undergoes an elastic collision with an initially stationary cart of unknown mass. After the collision, the first cart continues in its original direction at 1.05 m/s. 1.) What is the mass of the second cart? 2.)What is its (second cart) speed after impact? 3.)What is the speed of the two-cart center of mass?
Two air track gliders of mass 400.0 g and 300.0 g are moving towards each other...
Two air track gliders of mass 400.0 g and 300.0 g are moving towards each other in opposite directions with speeds of 60.0 cm/s and 100.0 cm/s, respectively. Take the direction of the more massive glider as positive. Use units of "g" and "cm/s" in your calculations. Determine the velocity of each glider after the collision if the collision is elastic. (Use units of "g" and "cm/s" for this question.) The most "inelastic" collision would occur if the two gliders...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT