In: Physics
a cart of mass of 420 g moving on a frictioless horizontal linear air track at an initial speed of 1.4 m/s undergoes an elastic collision with an initially stationary cart of unknown mass M. after the collision the initial cart moves with a speed pf 0.76 m/s. (a). what is the mass of the cart . b) what is the velocity of the second cart after the collision .
ELASTIC
m1 = 0.42 kg m2 = M
speeds before collision
u1 = 1.4 m/s
u2 = 0 m/s
speeds after collision
v1 = 0.76
m/s
v2 = ?
initial momentum before collision
Pi = m1*u1 + m2*u2
after collision final momentum
Pf = m1*v1 + m2*v2
from momentum conservation
total momentum is conserved
Pf = Pi
m1*u1 + m2*u2 = m1*v1 + m2*v2
m1*(u1-v1) = m2*(v2-u2) .....(1)
from energy conservation
total kinetic energy before collision = total kinetic
energy after collision
KEi = 0.5*m1*u1^2 + 0.5*m2*u2^2
KEf = 0.5*m1*v1^2 + 0.5*m2*v2^2
KEi = KEf
0.5*m1*u1^2 + 0.5*m2*u2^2 = 0.5*m1*v1^2 +
0.5*m2*v2^2
0.5*m1*(u1^2-v1^2) = 0.5*m2*(v2^2-u2^2).....(2)
solving 1&2
we get
u1 + v1 = v2 + u2
u1 - u2 = v2-v1
v2 = u1 - u2 + v1 ..........(3)
using 3 in 1
v1 = ((m1-m2)*u1 + (2*m2*u2))/(m1+m2)
v2 = ((m2-m1)*u2 + (2*m1*u1))/(m1+m2)
-----------------
0.76 = ((0.42-M)*1.4 + (2*M*0))/(0.42+M)
M = 0.124 kg = 124 g
v2 = ((124-420)*0 + (2*420*1.4))/(420+124)
v2 = 2.16 m/s