Question

In: Civil Engineering

x1 + x2 - 2x4 = 2 x1 + x2 + 2x3 + 6x4 + x5...

x1 + x2 - 2x4 = 2
x1 + x2 + 2x3 + 6x4 + x5 = 8
−2x1 - 2x2 + x3 + 8x4 = −1
3x3 + 12x4 + 2x5 = 9
Let the linear system be given.

a. Find the reduced row eelon form of the combined matrix (augmented matrix) of the system.

b. Is the system consistent? If the system is consistent, find the overall solution of the system.

c. Do all the solutions of the system create a vector space? Please explain.

Solutions

Expert Solution


Related Solutions

The values of X1, X2, X3, X4 and X5 are .1, .2, .08, .2 and .3....
The values of X1, X2, X3, X4 and X5 are .1, .2, .08, .2 and .3. Explicate the meaning of those numbers for the Z score. What are the prospects of this firm? Discuss thoroughly.
Probabilities Compute P(X1 + 2X2 -2X3 > 7) , where X1, X2, X3 are iid random...
Probabilities Compute P(X1 + 2X2 -2X3 > 7) , where X1, X2, X3 are iid random variables with common distribution N(1,4). You must give the numerical answer. Specify and show any formulas used for E, P, and Var for example Var( X1 + 2X2 -2X3) = 4 + 22(4) + (-2)2(4) = 35. Please specify how all the individual numbers where obtained and the formula used.
Find the Dual of the following LP max z = 4x1 − x2 + 2x3 x1...
Find the Dual of the following LP max z = 4x1 − x2 + 2x3 x1 + x2 ≤ 5 2x1 + x2 ≤ 7 2x2 + x3 ≥ 6 x1 + x3 = 4 x1 ≥ 0, x2, x3 free
Let Y = X1 + X2 + 2X3 represent the perimeter of an isosceles trapezoid, where...
Let Y = X1 + X2 + 2X3 represent the perimeter of an isosceles trapezoid, where X1 is normally distributed with a mean of 113 cm and a standard deviation of 5 cm, X2 is normally distributed with a mean of 245 cm and a standard deviation of 10 cm, and X3 is normally distributed with a mean of 98 cm and a standard deviation of 2 cm. 1. Find the mean perimeter of the trapezoid. 2. Suppose X1;X2; and...
Let Y = X1 + X2 + 2X3 represent the perimeter of an isosceles trapezoid, where...
Let Y = X1 + X2 + 2X3 represent the perimeter of an isosceles trapezoid, where X1 is normally distributed with a mean of 113 cm and a standard deviation of 5 cm, X2 is normally distributed with a mean of 245 cm and a standard deviation of 10 cm, and X3 is normally distributed with a mean of 98 cm and a standard deviation of 2 cm. 1. Find the mean perimeter of the trapezoid. 2. Suppose X1, X2,...
Using Y as the dependent variable and X1, X2, X3, X4 and X5 as the explanatory...
Using Y as the dependent variable and X1, X2, X3, X4 and X5 as the explanatory variables, formulate an econometric model for data that is (i) time series data (ii) cross-sectional data and (iii) panel data – (Hint: please specify the specific model here not its general form).
Amy has utility function u (x1, x2) = min { 2*(x1)^2*x2, x1*(x2)^2 }. Derive Amy's demand...
Amy has utility function u (x1, x2) = min { 2*(x1)^2*x2, x1*(x2)^2 }. Derive Amy's demand function for x1 and x2. For what values (if any) of m, p1, and p2 are the goods gross complements or gross substitutes of each other?
Maximize Z= 3 X1+4 X2+2.5X3 Subject to 3X1+4X2+2X3≤500 2X1+1X2+2X3≤400 1X1+3X2+3X3≤300 X1,X2,X3≥0 Change objective function coeffiecient x3...
Maximize Z= 3 X1+4 X2+2.5X3 Subject to 3X1+4X2+2X3≤500 2X1+1X2+2X3≤400 1X1+3X2+3X3≤300 X1,X2,X3≥0 Change objective function coeffiecient x3 to 6 and change coefficient of x3 to 5in constraint 1 ,to 2 in constraint 2 ,to 4 in constraint3. calculate new optimal solution using sensitivity analysis
y=fx1, ……..,x5) St: c1=w1(x1, ……..,x5) c2=w2(x1, ……..,x5) By using the signs of the principal minors Hj...
y=fx1, ……..,x5) St: c1=w1(x1, ……..,x5) c2=w2(x1, ……..,x5) By using the signs of the principal minors Hj 1-Derive the second- order-sufficient condition for maximum. 2-Derive the second order-sufficient condition for minimum
Let X1, X2, X3, X4, X5, and X6 denote the numbers of blue, brown, green, orange,...
Let X1, X2, X3, X4, X5, and X6 denote the numbers of blue, brown, green, orange, red, and yellow M&M candies, respectively, in a sample of size n. Then these Xi's have a multinomial distribution. Suppose it is claimed that the color proportions are p1 = 0.22, p2 = 0.13, p3 = 0.18, p4 = 0.2, p5 = 0.13, and p6 = 0.14. (a) If n = 12, what is the probability that there are exactly two M&Ms of each...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT