Question

In: Physics

An insulated Thermos contains 128 g of water at 81.3 ˚C. You put in a 12.5...

An insulated Thermos contains 128 g of water at 81.3 ˚C. You put in a 12.5 g ice cube at 0.00 ˚C to form a system of ice + original water. The specific heat of liquid water is 4190 J/kg•K; and the heat of fusion of water is 333 kJ/kg. What is the net entropy change of the system from then until the system reaches the final (equilibrium) temperature?

Solutions

Expert Solution


Related Solutions

An insulated Thermos contains 145 g of water at 70.7 ˚C. You put in a 11.0...
An insulated Thermos contains 145 g of water at 70.7 ˚C. You put in a 11.0 g ice cube at 0.00 ˚C to form a system of ice + original water. The specific heat of liquid water is 4190 J/kg•K; and the heat of fusion of water is 333 kJ/kg. What is the net entropy change of the system from then until the system reaches the final (equilibrium) temperature?
A calorimeter contains 20.0 mL of water at 12.5 ∘C . When 1.40 g of X...
A calorimeter contains 20.0 mL of water at 12.5 ∘C . When 1.40 g of X (a substance with a molar mass of 64.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 28.5 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water is 1.00...
Part A A calorimeter contains 16.0 mL of water at 12.5 ∘C . When 1.70 g...
Part A A calorimeter contains 16.0 mL of water at 12.5 ∘C . When 1.70 g of X (a substance with a molar mass of 54.0 g/mol ) is added, it dissolves via the reaction X(s)+H2O(l)→X(aq) and the temperature of the solution increases to 30.0 ∘C . Calculate the enthalpy change, ΔH, for this reaction per mole of X. Assume that the specific heat of the resulting solution is equal to that of water [4.18 J/(g⋅∘C)], that density of water...
An 13 g ice cube at -13˚C is put into a Thermos flask containing 110 cm3...
An 13 g ice cube at -13˚C is put into a Thermos flask containing 110 cm3 of water at 18˚C. By how much has the entropy of the cube-water system changed when a final equilibrium state is reached? The specific heat of ice is 2200 J/kg K and that of liquid water is 4187 J/kg K. The heat of fusion of water is 333 × 103 J/kg.
An 7.5 g ice cube at −10°C is put into a Thermos flask containing 150 cm3...
An 7.5 g ice cube at −10°C is put into a Thermos flask containing 150 cm3 of water at 21°C. By how much has the entropy of the cube–water system changed when equilibrium is reached? The specific heat of ice is 2220 J/kg · K. (The latent heat of fusion for water is 333 kJ/kg.)
An 8.5 g ice cube at −10°C is put into a Thermos flask containing 150 cm3...
An 8.5 g ice cube at −10°C is put into a Thermos flask containing 150 cm3 of water at 30°C. By how much has the entropy of the cube-water system changed when equilibrium is reached? The specific heat of ice is 2220 J/kg · K. (The latent heat of fusion for ice is 333 kJ/kg and the specific heat of water is 4187 J/kg · K.)
A 200 g insulated aluminum cup at 16 ∘C is filled with 255 g of water...
A 200 g insulated aluminum cup at 16 ∘C is filled with 255 g of water at 100 ∘C a) Determine the final temperature of the mixture. b)  Determine the total change in entropy as a result of the mixing process (use ΔS=∫dQ/T).
A 65 g ice cube at 0 °C is placed in an insulated box that contains...
A 65 g ice cube at 0 °C is placed in an insulated box that contains 8 g of steam at 200 °C. What is the equilibrium temperature reached by this closed system? Approximate the specific heat capacity of steam to be 1.5 J/g oC. All the other values can be found on the textbook. [Note: Assume that all of the steam condenses.]
A thermos contains 150cm3 of coffee at 85◦C. To cool the coffee, you drop two 11g...
A thermos contains 150cm3 of coffee at 85◦C. To cool the coffee, you drop two 11g ice cubes into the thermos. The ice cubes are initially at −10◦C and melt completely. What is the final temperature of the coffee? Treat the coffee as if it were water. Cice =2×103J/kg/◦C, CH2O =4186J/kg/◦C, Lf H2O =3.35×105J/kg.
An insulated container contains 15.0 g of steam at 100C. A mass of 65.0 g of...
An insulated container contains 15.0 g of steam at 100C. A mass of 65.0 g of ice at 0.00C is dropped into the container (assume no energy is absorbed by the container). C = Celsius a). How much heat is released by the steam when it condenses at 100C? (Qs) b). How much heat is absorbed by the ice when it melts at 0.00C? (Qi) c). What is the final temperature of the the water in the container? (T)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT