Question

In: Physics

5. The mass of the sun is 2.00 x 1030 kg. The radius of the sun...

5. The mass of the sun is 2.00 x 1030 kg. The radius of the sun is 7.00 x 108 m.
a) What is the DENSITY of the sun?
b) What are the possible errors in your calculation in a)?
c) What is the PRESSURE at the center of the sun? (HINT: think of the sun as two
gravitation masses each 1⁄2 the mass of the sun at the radius of the sun apart.)
d) What are the possible errors in your calculation in c)?
e) What is the TEMPERATURE at the center of the sun? (HINT: use the "perfect gas
law" T = P (m/k) (1/r) where T = temperature in K0, P = pressure, m = mass of each
particle that makes up the sun (what do you think that is?), k = Boltzmann constant =
1.38 x 10-23 kg m2s-2 (K0)-1, and r is density. CHECK all your UNITS first!)
f) What are the possible errors in your calculation in e)?

Solutions

Expert Solution


Related Solutions

Our Sun, with mass 2.00×1030 kg, revolves about the center of the Milky Way galaxy, which...
Our Sun, with mass 2.00×1030 kg, revolves about the center of the Milky Way galaxy, which is 2.20×1020 m away, once every 2.50×108 years. Assuming that each of the stars in the galaxy has a mass equal to that of our Sun, that the stars are distributed uniformly in a sphere about the galactic center, and that our Sun is essentially at the edge of that sphere, estimate roughly the number of stars in the galaxy.
The mass of the sun is 2*1030 kg. It currently consists to about 70% (mass) of...
The mass of the sun is 2*1030 kg. It currently consists to about 70% (mass) of hydrogen. The dominant source of energy for the sun is the pp-chain (type I) fusion process in which four protons fuse into a 4He core consisting of two protons and two neutrons. This process releases 26.22 MeV ( = 4.2*10-12 J) of energy. Assume that to first order the luminosity of the sun remains constant at 1.1 times its current-day value. How long will...
A satellite of mass 2.00 x 104 kg is placed in orbit around Jupiter. The mass...
A satellite of mass 2.00 x 104 kg is placed in orbit around Jupiter. The mass of Jupiter is 1.90 x 1027 kg. The distance between the satellite and the centre of Jupiter is 7.24 x 107 m. Determine the force of gravitational attraction (Fg) between the satellite and Jupiter. One of the moons of Jupiter is Io. The distance between the centre of Jupiter and the centre of Io is 4.22 x 108 m. If the force of gravitational...
A neutron star has a mass of 3.35 × 1030 kg (about the mass of our...
A neutron star has a mass of 3.35 × 1030 kg (about the mass of our sun) and a radius of 6.09 × 103 m. Suppose an object falls from rest near the surface of such a star. How fast would it be moving after it had fallen a distance of 0.013 m? (Assume that the gravitational force is constant over the distance of the fall, and that the star is not rotating.)
Blocks A (mass 2.00 kg ) and B (mass 12.00 kg , to the right of...
Blocks A (mass 2.00 kg ) and B (mass 12.00 kg , to the right of A) move on a frictionless, horizontal surface. Initially, block B is moving to the left at 0.500 m/s and block A is moving to the right at 2.00 m/s. The blocks are equipped with ideal spring bumpers. The collision is headon, so all motion before and after it is along a straight line. Let +x be the direction of the initial motion of A....
Problem 3.29 A star of mass 8 × 1030 kg is located at <6 × 1012,...
Problem 3.29 A star of mass 8 × 1030 kg is located at <6 × 1012, 2 × 1012, 0> m. A planet of mass 2 × 1024 kg is located at <2 × 1012, 5 × 1012, 0> m and is moving with a velocity of <0.6 × 104, 1.2 × 104, 0> m/s. (a) During a time interval of 1 × 106 seconds, what is the change in the planet's velocity? (b) During this time interval of 1...
A neutron star is an astrophysical object having a mass of roughly 2.8 × 1030 kg...
A neutron star is an astrophysical object having a mass of roughly 2.8 × 1030 kg (about 1.4 times the mass of the sun) but a radius of only about 12 km. If you were in a circular orbit of radius 320 km (about 200 mi), how long would it take you to go once around the star? Show all steps and give reasoning.
Zero, a hypothetical planet, has a mass of 5.0 x 1023 kg, a radius of 3.1...
Zero, a hypothetical planet, has a mass of 5.0 x 1023 kg, a radius of 3.1 x 106 m, and no atmosphere. A 10 kg space probe is to be launched vertically from its surface. (a) If the probe is launched with an initial kinetic energy of 5.0 x 107 J, what will be its kinetic energy when it is 4.0 x 106 m from the center of Zero? (b) If the probe is to achieve a maximum distance of...
Zero, a hypothetical planet, has a mass of 5.2 x 1023 kg, a radius of 3.2...
Zero, a hypothetical planet, has a mass of 5.2 x 1023 kg, a radius of 3.2 x 106 m, and no atmosphere. A 10 kg space probe is to be launched vertically from its surface. (a) If the probe is launched with an initial kinetic energy of 5.0 x 107 J, what will be its kinetic energy when it is 4.0 x 106 m from the center of Zero? (b) If the probe is to achieve a maximum distance of...
A block of mass m1 =2.00 kg and a block of massm2 = 6.00 kg areconnected...
A block of mass m1 =2.00 kg and a block of massm2 = 6.00 kg areconnected by a massless string over a pulley in the shape of asolid disk having radius R = 0.250 m and mass M =10.0 kg. These blocks are allowed to move on a fixed block-wedge ofangle ? = 30.0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT