Question

In: Physics

A neutron star is an astrophysical object having a mass of roughly 2.8 × 1030 kg...

A neutron star is an astrophysical object having a mass of roughly 2.8 × 1030 kg (about 1.4 times the mass of the sun) but a radius of only about 12 km. If you were in a circular orbit of radius 320 km (about 200 mi), how long would it take you to go once around the star? Show all steps and give reasoning.

Solutions

Expert Solution

The gravitational acceleration towards the star is

where G is the gravitational constant, M is the mass of the neutron star, r is the radial distance from the center of the star. r = 320 km

This acceleration is balanced by the outwards centrifugal acceleration

where is the angular velocity of the circular orbit

Equating the two accelerations:

The time period of revolution around the star is


Related Solutions

A neutron star has a mass of 3.35 × 1030 kg (about the mass of our...
A neutron star has a mass of 3.35 × 1030 kg (about the mass of our sun) and a radius of 6.09 × 103 m. Suppose an object falls from rest near the surface of such a star. How fast would it be moving after it had fallen a distance of 0.013 m? (Assume that the gravitational force is constant over the distance of the fall, and that the star is not rotating.)
Problem 3.29 A star of mass 8 × 1030 kg is located at <6 × 1012,...
Problem 3.29 A star of mass 8 × 1030 kg is located at <6 × 1012, 2 × 1012, 0> m. A planet of mass 2 × 1024 kg is located at <2 × 1012, 5 × 1012, 0> m and is moving with a velocity of <0.6 × 104, 1.2 × 104, 0> m/s. (a) During a time interval of 1 × 106 seconds, what is the change in the planet's velocity? (b) During this time interval of 1...
If you know the mass of a star and an object
If you know the mass of a star and an object
The mass of the sun is 2*1030 kg. It currently consists to about 70% (mass) of...
The mass of the sun is 2*1030 kg. It currently consists to about 70% (mass) of hydrogen. The dominant source of energy for the sun is the pp-chain (type I) fusion process in which four protons fuse into a 4He core consisting of two protons and two neutrons. This process releases 26.22 MeV ( = 4.2*10-12 J) of energy. Assume that to first order the luminosity of the sun remains constant at 1.1 times its current-day value. How long will...
5. The mass of the sun is 2.00 x 1030 kg. The radius of the sun...
5. The mass of the sun is 2.00 x 1030 kg. The radius of the sun is 7.00 x 108 m. a) What is the DENSITY of the sun? b) What are the possible errors in your calculation in a)? c) What is the PRESSURE at the center of the sun? (HINT: think of the sun as two gravitation masses each 1⁄2 the mass of the sun at the radius of the sun apart.) d) What are the possible errors...
Three small balls of mass 5.6 kg, 2.2 kg, and 2.8 kg are connected by light...
Three small balls of mass 5.6 kg, 2.2 kg, and 2.8 kg are connected by light rods laying along the y-axis. The rod connecting the first and second balls is 4.6 m long and the rod connecting the second and third balls is 2.5 m. The entire system rotates around the x-axis, which is between the first and second balls and a distance 2.9 m from the first ball, at a rotational speed 1.2 s-1 (a) What are the linear...
Two identical probes are sent along the same path toward a neutron star. A neutron star...
Two identical probes are sent along the same path toward a neutron star. A neutron star is very dense, packing as much as 2 solar masses2 solar masses into a sphere with a radius on the order of 10 km. At the moment shown, the two probes are d=55.3 kmd=55.3 km and D=178 kmD=178 km away from the center of the neutron star, respectively. Find the distance between the center of mass of the two probe system and its center...
a) At what distance from a 2 solar mass neutron star would a planet like the...
a) At what distance from a 2 solar mass neutron star would a planet like the Earth be tidally disrupted (that is, literally pulled apart)? That is, how close would the planet need to be to the NS for the difference between the NS’s gravity at the center of the planet and at the surface of the planet to be greater than the gravity holding the planet together? b) Would the asteroid Pallas be able to get any closer? (Pallas...
A ladder of length L = 2.8 m and mass m = 16 kg rests on...
A ladder of length L = 2.8 m and mass m = 16 kg rests on a floor with coefficient of static friction ?s = 0.51. Assume the wall is frictionless. 1) What is the normal force the floor exerts on the ladder? 2) What is the minimum angle the ladder must make with the floor to not slip? 3) A person with mass M = 69 kg now stands at the very top of the ladder. What is the...
An object has a mass in air of 0.0832 kg, apparent mass in water of 0.0673...
An object has a mass in air of 0.0832 kg, apparent mass in water of 0.0673 kg, and apparent mass in another liquid of 0.0718 kg. What is the specific gravity of the other liquid?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT