Question

In: Physics

A satellite of mass 2.00 x 104 kg is placed in orbit around Jupiter. The mass...

A satellite of mass 2.00 x 104 kg is placed in orbit around Jupiter. The mass of Jupiter is 1.90 x 1027 kg. The distance between the satellite and the centre of Jupiter is 7.24 x 107 m.

  1. Determine the force of gravitational attraction (Fg) between the satellite and Jupiter.
  2. One of the moons of Jupiter is Io. The distance between the centre of Jupiter and the centre of Io is 4.22 x 108 m. If the force of gravitational attraction between Io and Jupiter is 6.35 x 1022 N, what must be the mass of Io?
  3. If the mass of Io were to suddenly double, by what amount would the force of gravitational attraction change? (Do not actually calculate the force of attraction; just determine how much more or less the force of gravity would change.)
  4. One of the other moons that orbit Jupiter is Callisto. Its mass, mC, is 1.08 x 1023 kg. If the force of gravity between Jupiter and Callisto is 3.87 x 1021 N, then what must be the distance between the centre of Jupiter and the centre of Callisto? (This represents the radius of orbit Ro)
  5. If the distance between (Ro) Jupiter and Callisto doubles, by what amount would the force of gravitational attraction (Fg) change?

Solutions

Expert Solution


Related Solutions

The physics of satellite motion around Jupiter. A 155 kg satellite is placed in orbit 6.00...
The physics of satellite motion around Jupiter. A 155 kg satellite is placed in orbit 6.00 x 105 m above the surface of Jupiter. The tangential speed of the satellite is 3.99 x 104 m/s. Jupiter has a mass of 1.90 x 1027 kg and a radius of 7.14 x 107 m. Determine the radius of motion of the satellite. Calculate the centripetal force acting on the satellite to maintain its orbit. What is the cause of this centripetal force?...
The physics of satellite motion around Jupiter. A satellite is placed in orbit 5.00 x 105...
The physics of satellite motion around Jupiter. A satellite is placed in orbit 5.00 x 105 m above the surface of Jupiter. Jupiter has a mass of 1.80 x 1027 kg and a radius of 8.14 x 107 m. Determine the radius of motion of the satellite. What force is providing the centripetal force necessary for the satellite to stay in orbit? In what direction is the centripetal force always acting? Derive the mathematical equation that allows you to calculate...
A satellite of mass 220 kg is placed into Earth orbit at a height of 150...
A satellite of mass 220 kg is placed into Earth orbit at a height of 150 km above the surface. (a) Assuming a circular orbit, how long does the satellite take to complete one orbit? h (b) What is the satellite's speed? m/s (c) Starting from the satellite on the Earth's surface, what is the minimum energy input necessary to place this satellite in orbit? Ignore air resistance but include the effect of the planet's daily rotation. J
A satellite of mass 180 kg is placed into Earth orbit at a height of 850...
A satellite of mass 180 kg is placed into Earth orbit at a height of 850 km above the surface. (a) Assuming a circular orbit, how long does the satellite take to complete one orbit? ans)_____h (b) What is the satellite's speed? 7558.5 Correct: Your answer is correct. m/s (c) Starting from the satellite on the Earth's surface, what is the minimum energy input necessary to place this satellite in orbit? Ignore air resistance but include the effect of the...
A satellite of mass 1,500 kg is placed in a circular Earth orbit at a height,...
A satellite of mass 1,500 kg is placed in a circular Earth orbit at a height, h, above the surface. It is launched from Treasure Island in the SF Bay at 37 degrees latitude (north of the equator). 2465.98 10 , 6.37 10EarthEarthMxkgRx==ma) Derive Kepler’s Thrid Law from Newton’s Universal Law of gravity. b) If the orbital period of the satellite is 12 hrs, find the distance h above the Earth. c) What is the minimum energy required to put...
A satellite is placed in an elongated elliptical (not circular) orbit around the Earth. At the...
A satellite is placed in an elongated elliptical (not circular) orbit around the Earth. At the point in its orbit where it is closest to the Earth, it is a distance of 1.00 × 10^6 m from the surface (not the center) of the Earth, and is moving at a velocity of 5.14 km/s. At the point in its orbit when it is furthest from the Earth it is a distance of 2.00×10^6 m from the surface of the Earth....
A satellite has a mass of 6189 kg and is in a circular orbit 4.84 ×...
A satellite has a mass of 6189 kg and is in a circular orbit 4.84 × 105 m above the surface of a planet. The period of the orbit is 2.4 hours. The radius of the planet is 4.80 × 106 m. What would be the true weight of the satellite if it were at rest on the planet’s surface? W = ?
A satellite with Mass m is in orbit with a constant radius around the earth r0...
A satellite with Mass m is in orbit with a constant radius around the earth r0 (RE=6370km, Mass ME = 5,98*1024kg) a) Show that the satellite moves with uniform circular motion and calculate the velocity v0 in dependance of G,M E and R E . b) At which height h above the earth's surface is the geostationary orbit found? Which linear velocity does a satellite have at this height? c) Compare this to the linear velocity on earth's surface as...
A satellite is put into an elliptical orbit around the Earth. When the satellite is at...
A satellite is put into an elliptical orbit around the Earth. When the satellite is at its perigee, its nearest point to the Earth, its height above the ground is hp=215.0 km,hp=215.0 km, and it is moving with a speed of vp=8.450 km/s.vp=8.450 km/s. The gravitational constant GG equals 6.67×10−11 m3⋅kg−1⋅s−26.67×10−11 m3·kg−1·s−2 and the mass of Earth equals 5.972×1024 kg.5.972×1024 kg. When the satellite reaches its apogee, at its farthest point from the Earth, what is its height haha above...
A satellite is put into an elliptical orbit around the Earth. When the satellite is at...
A satellite is put into an elliptical orbit around the Earth. When the satellite is at its perigee, its nearest point to the Earth, its height above the ground is ℎp=215.0 km, and it is moving with a speed of ?p=8.850 km/s. The gravitational constant ? equals 6.67×10−11 m3·kg−1·s−2 and the mass of Earth equals 5.972×1024 kg. When the satellite reaches its apogee, at its farthest point from the Earth, what is its height ℎa above the ground? For this...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT