Question

In: Advanced Math

this is abstract algebra Let M be a Q[x]-module which is finite-dimensional as a vector space....

this is abstract algebra

Let M be a Q[x]-module which is finite-dimensional as a vector space. What is its torsion submodule?

Solutions

Expert Solution


Related Solutions

this is abstract algebra Let M be a Q[x]-module which is finite-dimensional as a vector space....
this is abstract algebra Let M be a Q[x]-module which is finite-dimensional as a vector space. What is its torsion submodule?
1. Let ? be a finite dimensional vector space with basis {?1,...,??} and ? ∈ L(?)....
1. Let ? be a finite dimensional vector space with basis {?1,...,??} and ? ∈ L(?). Show the following are equivalent: (a) The matrix for ? is upper triangular. (b) ?(??) ∈ Span(?1,...,??) for all ?. (c) Span(?1,...,??) is ?-invariant for all ?. please also explain for (a)->(b) why are all the c coefficients 0 for all i>k? and why T(vk) in the span of (v1,.....,vk)? i need help understanding this.
Let V be a finite dimensional vector space over R. If S is a set of...
Let V be a finite dimensional vector space over R. If S is a set of elements in V such that Span(S) = V , what is the relationship between S and the basis of V ?
Let T be a linear operator on a finite-dimensional complex vector space V . Prove that...
Let T be a linear operator on a finite-dimensional complex vector space V . Prove that T is diagonalizable if and only if for every λ ∈ C, we have N(T − λIV ) = N((T − λIV )2).
Let T be an operator on a finite-dimensional complex vector space V, and suppose that dim...
Let T be an operator on a finite-dimensional complex vector space V, and suppose that dim Null T = 3, dimNullT2 =6. Prove that T does not have a square root; i.e. there does not exist any S ∈ L (V) such that S2 = T.
(abstract algebra) Let F be a field. Suppose f(x), g(x), h(x) ∈ F[x]. Show that the...
(abstract algebra) Let F be a field. Suppose f(x), g(x), h(x) ∈ F[x]. Show that the following properties hold: (a) If g(x)|f(x) and h(x)|g(x), then h(x)|f(x). (b) If g(x)|f(x), then g(x)h(x)|f(x)h(x). (c) If h(x)|f(x) and h(x)|g(x), then h(x)|f(x) ± g(x). (d) If g(x)|f(x) and f(x)|g(x), then f(x) = kg(x) for some k ∈ F \ {0}
Let V be the 3-dimensional vector space of all polynomials of order less than or equal...
Let V be the 3-dimensional vector space of all polynomials of order less than or equal to 2 with real coefficients. (a) Show that the function B: V ×V →R given by B(f,g) = f(−1)g(−1) + f(0)g(0) + f(1)g(1) is an inner product and write out its Gram matrix with respect to the basis (1,t,t2). DO NOT COPY YOUR SOLUTION FROM OTHER SOLUTIONS
Let V be a finite-dimensional vector space over C and T in L(V). Prove that the...
Let V be a finite-dimensional vector space over C and T in L(V). Prove that the set of zeros of the minimal polynomial of T is exactly the same as the set of the eigenvalues of T.
Suppose V is a finite dimensional inner product space. Prove that every orthogonal operator on V...
Suppose V is a finite dimensional inner product space. Prove that every orthogonal operator on V , i.e., <T(u),T(v)> = <u,v>, ∀u,v ∈ V , is an isomorphism.
Consider an algebra where the vector space is ℝ3 and the multiplication of vectors is the...
Consider an algebra where the vector space is ℝ3 and the multiplication of vectors is the conventional cross product you learned as a beginning physics student. Find the structure constants of this algebra.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT