Question

In: Advanced Math

Let T be an operator on a finite-dimensional complex vector space V, and suppose that dim...

Let T be an operator on a finite-dimensional complex vector space V, and suppose that dim Null T = 3, dimNullT2 =6. Prove that T does not have a square root; i.e. there does not exist any S ∈ L (V) such that S2 = T.

Solutions

Expert Solution


Related Solutions

Let T be a linear operator on a finite-dimensional complex vector space V . Prove that...
Let T be a linear operator on a finite-dimensional complex vector space V . Prove that T is diagonalizable if and only if for every λ ∈ C, we have N(T − λIV ) = N((T − λIV )2).
suppose that T : V → V is a linear map on a finite-dimensional vector space...
suppose that T : V → V is a linear map on a finite-dimensional vector space V such that dim range T = dim range T2. Show that V = range T ⊕null T. (Hint: Show that null T = null T2, null T ∩ range T = {0}, and apply the fundamental theorem of linear maps.)
Let V be a finite-dimensional vector space over C and T in L(V). Prove that the...
Let V be a finite-dimensional vector space over C and T in L(V). Prove that the set of zeros of the minimal polynomial of T is exactly the same as the set of the eigenvalues of T.
Let V be a finite dimensional vector space over R. If S is a set of...
Let V be a finite dimensional vector space over R. If S is a set of elements in V such that Span(S) = V , what is the relationship between S and the basis of V ?
Suppose U is a subspace of a finite dimensional vector space V. Prove there exists an...
Suppose U is a subspace of a finite dimensional vector space V. Prove there exists an operator T on V such that the null space of T is U.
6a. Let V be a finite dimensional space, and let Land T be two linear maps...
6a. Let V be a finite dimensional space, and let Land T be two linear maps on V. Show that LT and TL have the same eigenvalues. 6b. Show that the result from part A is not necessarily true if V is infinite dimensional.
1. Let ? be a finite dimensional vector space with basis {?1,...,??} and ? ∈ L(?)....
1. Let ? be a finite dimensional vector space with basis {?1,...,??} and ? ∈ L(?). Show the following are equivalent: (a) The matrix for ? is upper triangular. (b) ?(??) ∈ Span(?1,...,??) for all ?. (c) Span(?1,...,??) is ?-invariant for all ?. please also explain for (a)->(b) why are all the c coefficients 0 for all i>k? and why T(vk) in the span of (v1,.....,vk)? i need help understanding this.
1. Let V be real vector space (possibly infinite-dimensional), S, T ∈ L(V ), and S...
1. Let V be real vector space (possibly infinite-dimensional), S, T ∈ L(V ), and S be in- vertible. Prove λ ∈ C is an eigenvalue of T if and only if λ is an eigenvalue of STS−1. Give a description of the set of eigenvectors of STS−1 associated to an eigenvalue λ in terms of the eigenvectors of T associated to λ. Show that there exist square matrices A, B that have the same eigenvalues, but aren’t similar. Hint:...
Suppose ? is a finite-dimensional with dim ? > 1 and ? ∈ ℒ(?). Prove that...
Suppose ? is a finite-dimensional with dim ? > 1 and ? ∈ ℒ(?). Prove that {?(?)|? ∈ ?[?]} ≠ ℒ(?).
Let V and W be finite dimensional vector spaces over a field F with dimF(V )...
Let V and W be finite dimensional vector spaces over a field F with dimF(V ) = dimF(W ) and let T : V → W be a linear map. Prove there exists an ordered basis A for V and an ordered basis B for W such that [T ]AB is a diagonal matrix where every entry along the diagonal is either a 0 or a 1.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT