Question

In: Chemistry

A 215 g block of copper at 505.0°C is plunged into 1.000 kg of water (T...

A 215 g block of copper at 505.0°C is plunged into 1.000 kg of water (T = 23.4 °C) in an insulated container. What will be the final equilibrium T in °C of the water and the Cu? (sCu = 0.385 J g-1 °C-1)

Solutions

Expert Solution

Sol :-

The values provided in the question are as follows :-

Mass of block of copper = 215g=0.125kg

Mass of water = 1kg

Initial temperature of copper = 505 °C

Initial temperature of water = 23.4 °C

Specific heat of copper = 0.385 J g-1 °C-1 = 385 J kg-1 °C-1

Specific heat of water = 4200 J kg-1 °C-1

We have to find Final equlibrium temperature T in °C of water and copper as follws :-

Hence, the final equilibrium temperature in °C of the water and Cu is found to be = T = 28.62°C


Related Solutions

A 26.0-g aluminum block is warmed to 65.1 ∘C and plunged into an insulated beaker containing...
A 26.0-g aluminum block is warmed to 65.1 ∘C and plunged into an insulated beaker containing 55.5 g of water initially at 22.3 ∘C . The aluminum and the water are allowed to come to thermal equilibrium. (Cs,H2O=4.18J/g⋅∘C , Cs,Al=0.903J/g⋅∘C ) Assuming that no heat is lost, what is the final temperature of the water and aluminum? T = ??      ∘C     
A block made of copper with a mass of 0.90 kg is heated to 800°C, then...
A block made of copper with a mass of 0.90 kg is heated to 800°C, then dropped into 5.00 kg of water at 11°C. What is the total change in entropy (in J/K) of the block-water system, assuming no energy is lost by heat from this system to the surroundings? The specific heat of copper is 387 J/(kg · K), and the specific heat of water is 4,186 J/(kg · K). (Hint: note that dQ = mcdT.)
Two 20.0-g ice cubes at –19.0 °C are placed into 215 g of water at 25.0...
Two 20.0-g ice cubes at –19.0 °C are placed into 215 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature of the water after all the ice melts.
A copper block of mass 6.8 kg is originally at a temperature of 18°C and 1...
A copper block of mass 6.8 kg is originally at a temperature of 18°C and 1 atm. It is then heated to a temperature of 69°C without any change in pressure. The specific heat of copper is 387 J/(kg · °C), its density is 8.94 103 kg/m3, and the coefficient of linear expansion is 17 ✕ 10 −6 /°C. (a) Determine the work done by the copper block. J (b) How much heat energy is transferred during this process? J...
A m1 = 1.00-kg aluminum block and a m2 = 6.10-kg copper block are connected by...
A m1 = 1.00-kg aluminum block and a m2 = 6.10-kg copper block are connected by a light string over a frictionless pulley. The two blocks are allowed to move on a fixed steel block wedge (of angle θ = 34.5°) as shown in the figure. (For aluminum on steel, μs = 0.61 and μk = 0.47. For copper on steel, μs = 0.53 and μk = 0.36.) (a) the acceleration of the two blocks and (b) the tension in...
A 1.000 g sample of copper reacts with an unknown element X to form 1.908 g...
A 1.000 g sample of copper reacts with an unknown element X to form 1.908 g Cu5X9. What is element X??
What will be the equilibrium temperature when a 275 g block of copper at 235 ?C...
What will be the equilibrium temperature when a 275 g block of copper at 235 ?C is placed in a 135 g aluminum calorimeter cup containing 875 g of water at 14.0 ?C?
A 3.00-kg block of copper at 15.0°C is dropped into a large vessel of liquid nitrogen...
A 3.00-kg block of copper at 15.0°C is dropped into a large vessel of liquid nitrogen at 77.3 K. How many kilograms of nitrogen boil away by the time the copper reaches 77.3 K? (The specific heat of copper is 0.092 0 cal/g · °C, and the latent heat of vaporization of nitrogen is 48.0 cal/g.)
3` - T A T A G A G C A A T T G C...
3` - T A T A G A G C A A T T G C T A C G T G T A T C C C G A G A C T C C G T A A – 5` 5` - A T A T C T C G T T A A C G A T G C A C A T A G G G C T C T G A G G C A...
If you pour 0.0350 kg of 25.0°C water onto a 1.18 kg block of ice (which...
If you pour 0.0350 kg of 25.0°C water onto a 1.18 kg block of ice (which is initially at −15.0°C), what is the final temperature (in °C)? You may assume that the water cools so rapidly that effects of the surroundings are negligible.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT