Question

In: Physics

A 3.00-kg block of copper at 15.0°C is dropped into a large vessel of liquid nitrogen...

A 3.00-kg block of copper at 15.0°C is dropped into a large vessel of liquid nitrogen at 77.3 K. How many kilograms of nitrogen boil away by the time the copper reaches 77.3 K? (The specific heat of copper is 0.092 0 cal/g · °C, and the latent heat of vaporization of nitrogen is 48.0 cal/g.)

Solutions

Expert Solution


Related Solutions

A block made of copper with a mass of 0.90 kg is heated to 800°C, then...
A block made of copper with a mass of 0.90 kg is heated to 800°C, then dropped into 5.00 kg of water at 11°C. What is the total change in entropy (in J/K) of the block-water system, assuming no energy is lost by heat from this system to the surroundings? The specific heat of copper is 387 J/(kg · K), and the specific heat of water is 4,186 J/(kg · K). (Hint: note that dQ = mcdT.)
A copper block of mass 6.8 kg is originally at a temperature of 18°C and 1...
A copper block of mass 6.8 kg is originally at a temperature of 18°C and 1 atm. It is then heated to a temperature of 69°C without any change in pressure. The specific heat of copper is 387 J/(kg · °C), its density is 8.94 103 kg/m3, and the coefficient of linear expansion is 17 ✕ 10 −6 /°C. (a) Determine the work done by the copper block. J (b) How much heat energy is transferred during this process? J...
A 215 g block of copper at 505.0°C is plunged into 1.000 kg of water (T...
A 215 g block of copper at 505.0°C is plunged into 1.000 kg of water (T = 23.4 °C) in an insulated container. What will be the final equilibrium T in °C of the water and the Cu? (sCu = 0.385 J g-1 °C-1)
The arrangement in the drawing shows a block (mass = 15.0 kg) that is held in...
The arrangement in the drawing shows a block (mass = 15.0 kg) that is held in position on a frictionless incline by a cord (length = 0.52 m). The mass per unit length of the cord is 1.26 × 10-2 kg/m, so the mass of the cord is negligible compared to the mass of the block. The cord is being vibrated at a frequency of 91.7 Hz (vibration source not shown in the drawing). What is the largest angle θ...
A 15.0 kg block is released from rest at point A in the figure below. The...
A 15.0 kg block is released from rest at point A in the figure below. The track is frictionless except for the portion between points B and C, which has a length of 6.00 m. The block travels down the track, hits a spring of force constant 2,300 N/m, and compresses the spring 0.200 m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between points B...
A vessel initially contains 5.0 kg of liquid water and 2.0 kg of ice at 0...
A vessel initially contains 5.0 kg of liquid water and 2.0 kg of ice at 0 C. Energy is added until the ice has just melted. The temperature at the boundary where heat transfer occurs is taken to be the system temperature during the process. The enthalpy of melting ice is 333.5 kJ/kg. Consider the following processes used to melt the ice. a.) Heat is added to from the environment at 20 C. Determine the entropy flux and the total...
The coefficient of friction between the block of mass m1 = 3.00 kg and the surface...
The coefficient of friction between the block of mass m1 = 3.00 kg and the surface in the figure below is μk = 0.455. The system starts from rest. What is the speed of the ball of mass m2 = 5.00 kg when it has fallen a distance h = 1.10 m?
A 15.0 kg block (#2) is attached to a very horizontal light spring with a spring...
A 15.0 kg block (#2) is attached to a very horizontal light spring with a spring constant of 500 N/m and is resting on a frictionless horizontal table. It is struck by a 3.00 kg block (#1) traveling horizontally at 8.00 m/s. After the collision, block #1 rebounds with a speed of 2.0 m/s in the opposite direction. What is the maximum distance the spring compresses?
Question B5 (a) A very hot 0.8 kg copper cylinder at temperature 365.84℃ is dropped into...
Question B5 (a) A very hot 0.8 kg copper cylinder at temperature 365.84℃ is dropped into a 0.2 kg copper bowl contains 0.3 kg of water at 20℃. The final temperature of the system is 85℃. Given that specific heat of copper 386 J/kg·K and specific heat of water 4190 J/kg·K. (i) Find the entropy change ∆S1 of the copper bowl and water. (ii) Find the entropy change ∆S2 of the copper cylinder. (iii) Find the net entropy change ∆Snet...
A liquid mixture of benzene and toluene is contained in a closed vessel at 60°C. The...
A liquid mixture of benzene and toluene is contained in a closed vessel at 60°C. The only other component in the system is nitrogen gas which is used to pressurize the system to 1 atm total pressure (absolute). The liquid is 70 mole% benzene and 30 mole% toluene, and the N2 is considered non-condensable (i.e., the liquid mole fraction of nitrogen is zero). Consider the mixture to be ideal, and determine the vapor mole fractions of the three components. (Document...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT