In: Statistics and Probability
|
c1 |
c2 |
c3 |
c4 |
c5 |
c6 |
c7 |
p1 |
p2 |
p3 |
p4 |
p5 |
Zone1 |
9 |
81 |
100 |
1000 |
0.1 |
21 |
53 |
97 |
0.7 |
1001 |
27 |
303 |
Zone2 |
11 |
9 |
700 |
7000 |
0.7 |
23 |
65 |
12 |
0.1 |
1807 |
31 |
411 |
Zone3 |
7 |
4 |
605 |
6035 |
1.9 |
34 |
88 |
1 |
0 |
991 |
39 |
120 |
Zone4 |
16 |
81 |
357 |
1972 |
4.9 |
22 |
99 |
99 |
0 |
301 |
43 |
140 |
Zone5 |
8 |
77 |
87 |
3315 |
8.9 |
26 |
49 |
88 |
0.1 |
5119 |
55 |
199 |
Zone6 |
11 |
69 |
420 |
497 |
8.7 |
25 |
87 |
87 |
0.5 |
8007 |
27 |
613 |
Zone7 |
9 |
7 |
199 |
4414 |
7.6 |
24 |
66 |
3 |
3.2 |
5000 |
31 |
810 |
Zone8 |
7 |
10 |
148 |
3937 |
3.3 |
25 |
77 |
14 |
6.1 |
98 |
33 |
98 |
Zone9 |
6 |
18 |
152 |
6163 |
3.7 |
22 |
81 |
17 |
0 |
9001 |
18 |
120 |
Zone10 |
1 |
1 |
433 |
999 |
0.1 |
21 |
78 |
2 |
0.1 |
6330 |
63 |
140 |
Drive characteristics root and canonical correlation weight from this table. how many root of them is significant?
The raw data
There are 7 variables in the criteria set, and 5 in the predictors, values of these variables being observed for 10 areas
YEAR ONE | YEAR TWO | ||||||||||||
CRITERIA | PREDICTORS | ||||||||||||
EMPLOYMENT VARIABLES | EMPLOYMENT VARIABLES | ||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 | 5 | ||
AREAS | Zone1 | 9 | 81 | 100 | 1000 | 0.1 | 21 | 53 | 97 | 0.7 | 1001 | 27 | 303 |
Zone2 | 11 | 9 | 700 | 7000 | 0.7 | 23 | 65 | 12 | 0.1 | 1807 | 31 | 411 | |
Zone3 | 7 | 4 | 605 | 6035 | 1.9 | 34 | 88 | 1 | 0 | 991 | 39 | 120 | |
Zone4 | 16 | 81 | 357 | 1972 | 4.9 | 22 | 99 | 99 | 0 | 301 | 43 | 140 | |
Zone5 | 8 | 77 | 87 | 3315 | 8.9 | 26 | 49 | 88 | 0.1 | 5119 | 55 | 199 | |
Zone6 | 11 | 69 | 420 | 497 | 8.7 | 25 | 87 | 87 | 0.5 | 8007 | 27 | 613 | |
Zone7 | 9 | 7 | 199 | 4414 | 7.6 | 24 | 66 | 3 | 3.2 | 5000 | 31 | 810 | |
Zone8 | 7 | 10 | 148 | 3937 | 3.3 | 25 | 77 | 14 | 6.1 | 98 | 33 | 98 | |
Zone9 | 6 | 18 | 152 | 6163 | 3.7 | 22 | 81 | 17 | 0 | 9001 | 18 | 120 | |
Zone10 | 1 | 1 | 433 | 999 | 0.1 | 21 | 78 | 2 | 0.1 | 6330 | 63 | 140 |
Calculate means and standard deviations
Mean |
8.5 |
35.7 |
320.1 |
3533.2 |
3.99 |
24.3 |
74.3 |
42 |
1.08 |
3765.5 |
36.7 |
295.4 |
Standard Deviation |
3.89444 |
35.96 |
217.281 |
2372.88 |
3.43461 |
3.83116 |
15.8958 |
44.1286 |
2.01539 |
3332.71 |
13.6955 |
244.311 |
Standardise the raw data
Standardised scores are required for the calculation of the canonical scores in step 6. (Most computer programs use standardized data for computing the correlation coefficients.
Standard scores, Z, are given by
Standardised Z scores | |||||||||||||
YEAR ONE | YEAR TWO | ||||||||||||
CRITERIA | PREDICTORS | ||||||||||||
EMPLOYMENT VARIABLES | EMPLOYMENT VARIABLES | ||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 4 | 5 | ||
AREAS | Zone1 | 6.82 | 80.01 | 98.53 | 998.51 | -1.06 | 14.66 | 48.33 | 96.05 | 0.16 | 999.87 | 24.32 | 301.79 |
Zone2 | 8.82 | 8.01 | 698.53 | 6998.51 | -0.46 | 16.66 | 60.33 | 11.05 | -0.44 | 1805.87 | 28.32 | 409.79 | |
Zone3 | 4.82 | 3.01 | 603.53 | 6033.51 | 0.74 | 27.66 | 83.33 | 0.05 | -0.54 | 989.87 | 36.32 | 118.79 | |
Zone4 | 13.82 | 80.01 | 355.53 | 1970.51 | 3.74 | 15.66 | 94.33 | 98.05 | -0.54 | 299.87 | 40.32 | 138.79 | |
Zone5 | 5.82 | 76.01 | 85.53 | 3313.51 | 7.74 | 19.66 | 44.33 | 87.05 | -0.44 | 5117.87 | 52.32 | 197.79 | |
Zone6 | 8.82 | 68.01 | 418.53 | 495.51 | 7.54 | 18.66 | 82.33 | 86.05 | -0.04 | 8005.87 | 24.32 | 611.79 | |
Zone7 | 6.82 | 6.01 | 197.53 | 4412.51 | 6.44 | 17.66 | 61.33 | 2.05 | 2.66 | 4998.87 | 28.32 | 808.79 | |
Zone8 | 4.82 | 9.01 | 146.53 | 3935.51 | 2.14 | 18.66 | 72.33 | 13.05 | 5.56 | 96.87 | 30.32 | 96.79 | |
Zone9 | 3.82 | 17.01 | 150.53 | 6161.51 | 2.54 | 15.66 | 76.33 | 16.05 | -0.54 | 8999.87 | 15.32 | 118.79 | |
Zone10 | -1.18 | 0.01 | 431.53 | 997.51 | -1.06 | 14.66 | 73.33 | 1.05 | -0.44 | 6328.87 | 60.32 | 138.79 |
Calculate and partition the correlation matrix
These relationships can be expressed by combining the two sets of data and by calculating product-moment correlation coefficients for each pair of variables. In our employment example, there were 7 criteria variables and 5 predictor variables so that the dimensions of the correlation matrix R are 12 x 12.
R11 = The matrix of intercorrelations among 7 criteria variables
R22 = The matrix of intercorrelations among 5 predictor variables
R12 = The matrix of intercorrelations among 7 criteria variables with the 5 predictor variables
R21 = Transpose of R12
I have used EXCEL> DATA > DATA Analysis > Correlation to calculate correlation
R11 | R12 | ||||||||||
1 | 0.5828 | 0.10853 | -0.039389 | 0.348 | -0.048 | 0.2199 | 0.5922 | -0.092 | -0.379907 | -0.326 | 0.279104 |
0.5828 | 1 | -0.3814 | -0.601244 | 0.39 | -0.232 | -0.142 | 0.9972 | -0.31 | -0.062693 | 0.0079 | 0.01485 |
0.1085 | -0.381 | 1 | 0.29588 | -0.348 | 0.3357 | 0.4172 | -0.349 | -0.385 | -0.161804 | 0.1143 | 0.050929 |
-0.039 | -0.601 | 0.29588 | 1 | -0.158 | 0.3856 | -0.04 | -0.628 | 0.048 | -0.107017 | -0.329 | -0.0866 |
0.3476 | 0.3895 | -0.3482 | -0.157827 | 1 | 0.1548 | -0.011 | 0.3676 | 0.108 | 0.407298 | -0.031 | 0.461749 |
-0.048 | -0.232 | 0.33565 | 0.38558 | 0.155 | 1 | 0.1845 | -0.25 | 0.015 | -0.221449 | 0.057 | -0.09938 |
0.2199 | -0.142 | 0.41717 | -0.040026 | -0.011 | 0.1845 | 1 | -0.112 | -0.075 | -0.005127 | -0.066 | -0.2163 |
0.5922 | 0.9972 | -0.3486 | -0.627746 | 0.368 | -0.25 | -0.112 | 1 | -0.296 | -0.077673 | 0.009 | 0.012367 |
-0.092 | -0.31 | -0.3845 | 0.047905 | 0.108 | 0.0153 | -0.075 | -0.296 | 1 | -0.298424 | -0.195 | 0.133835 |
-0.38 | -0.063 | -0.1618 | -0.107017 | 0.407 | -0.221 | -0.005 | -0.078 | -0.298 | 1 | -0.074 | 0.277928 |
-0.326 | 0.0079 | 0.11434 | -0.328752 | -0.031 | 0.057 | -0.066 | 0.009 | -0.195 | -0.074312 | 1 | -0.33107 |
0.2791 | 0.0149 | 0.05093 | -0.086605 | 0.462 | -0.099 | -0.216 | 0.0124 | 0.134 | 0.277928 | -0.331 | 1 |
R21 | R22 |
Calculate the latent roots
To find the canonical roots, we first have to find the latent roots of the canonical equation:
a) Invert R22 and R11.
MATLAB command to find inverse
>>inv(r11)
3.652 | -3.48 | -1.2793 | -2.10662 | -0.85 | 0.933 | -1.03 |
-3.48 | 5.247 | 1.3368 | 3.03531 | 0.255 | -0.84 | 1.234 |
-1.28 | 1.337 | 2.1619 | 0.54131 | 0.879 | -0.78 | -0.26 |
-2.11 | 3.035 | 0.5413 | 3.07055 | 0.389 | -1.01 | 0.982 |
-0.85 | 0.255 | 0.8794 | 0.38941 | 1.669 | -0.69 | 0.016 |
0.933 | -0.84 | -0.7756 | -1.0062 | -0.69 | 1.671 | -0.36 |
-1.03 | 1.234 | -0.2562 | 0.98198 | 0.016 | -0.36 | 1.614 |
>>inv(r22)
1.154 | 0.448 | 0.26349 | 0.054 | -0.1297 |
0.448 | 1.37 | 0.53342 | 0.215 | -0.2658 |
0.263 | 0.533 | 1.29971 | 0.061 | -0.4157 |
0.054 | 0.215 | 0.06085 | 1.158 | 0.33687 |
-0.13 | -0.27 | -0.41573 | 0.337 | 1.26425 |
b) Multiply the sub-matrices
M | 0.989 | -0.11 | 0.0418 | 0.01571 | 0.067 |
-0.03 | 0.721 | 0.1425 | -0.04383 | 0.214 | |
-0.01 | -0.06 | 0.9398 | 0.19715 | -0.06 | |
0.009 | 0.03 | 0.2603 | 0.38713 | 0.314 | |
0.018 | 0.194 | -0.1235 | 0.08511 | 0.821 |
c) Extract the roots
I have used MATLAB to calculate characteristic polynomial and roots of the 5X5 matrix, M
charpoly(m)
1.0000 -3.8578 5.7173 -4.0055 1.2899 -0.1441
The characteristic equation will be
Characteristic roots
eig(m)
0.6286
0.2292
1.0000
1.0000
1.0000
The canonical roots are the square roots of those values so
R canonical 1 = 0.7928
R canonical 2 = 0.4787
R canonical 3 = 1
R canonical 4 = 1
R canonical 5 = 1
Calculate the canonical weights for vector B1
The weights B for the predictor variables are given by
BB = The cofactor of the matrix C
Weights are given by
Calculate the canonical weights for vector A1
and the weights A for the criteria variables by
I have written MATLAB code for above calculation
%r is the vector roots
%m is the 5X5 matrix mentioned above
%ir11 is the inverse of r11
AA = ir11*r12;
for i = 1:5
C = m - r(i,1)*eye(5,5);
BB = cof(C);
P = BB(1,:)*r22*BB(1,:)';
B(i,:) = 1/sqrt(P)*BB(1,:);
A11 = AA*B(i,:)';
A(i,:) = (1/sqrt(r(i,1))).*A11;
end
CANONICAL WEIGHTS
A1 | B1 | A2 | B2 | A3 | B3 | A4 | B4 | A5 | B5 |
-0.46 | -0.3918 | -0.1211 | 0.05468 | -0.1945 | 0.88358 | -0.6473 | -0.4517 | 1.68813 | -0.1142 |
0.505 | -0.9507 | -0.2271 | 0.25338 | 1.36392 | -0.2391 | 1.11855 | -0.5746 | -1.2544 | -0.1194 |
1.401 | -0.3045 | -0.1517 | -0.2299 | 0.11651 | -0.0951 | -0.0082 | -0.2712 | -0.3911 | -1.0351 |
0.086 | 0.36918 | -1.0005 | 0.82935 | 0.26551 | -0.1222 | 1.08095 | -0.527 | -0.7479 | -0.2023 |
0.39 | 0.63747 | -0.5903 | -0.252 | -0.1855 | -0.1625 | -0.6998 | -0.7348 | -0.7059 | 0.4775 |
-0.26 | 0.73908 | -0.031 | 0.01334 | 0.62828 | |||||
-0.41 | -0.1765 | 0.16558 | 0.62741 | -0.6027 |