Question

In: Economics

Suppose we have two firms with the following production technologies f (x1,x2) = min{x1,2x2} f (x1,x2)...

Suppose we have two firms with the following production technologies

f (x1,x2) = min{x1,2x2}

f (x1,x2) = x1 + 2x2
Suppose the firms face the same prices on inputs. Denote the input prices by w1,w2. Further suppose the firms can sell their output for the same price p.
(a)Find the demand function for the inputs for both firms

(b)Suppose w1 = 1,w2 = 2, and p = 10, what are the profits of the firms
(c)Suppose the price of input 1 goes down to .5, analyze the effect of the decrease in price on the demands and the profits of the firms.

Solutions

Expert Solution


Related Solutions

2.2.8. Suppose X1 and X2 have the joint pdf f(x1, x2) = " e−x1 e−x2 x1...
2.2.8. Suppose X1 and X2 have the joint pdf f(x1, x2) = " e−x1 e−x2 x1 > 0, x2 > 0 0 elsewhere . For constants w1 > 0 and w2 > 0, let W = w1X1 + w2X2. (a) Show that the pdf of W is fW (w) = " 1 w1− w2 (e−w/w1 − e−w/w2) w > 0 0 elsewhere . (b) Verify that fW (w) > 0 for w > 0. (c) Note that the pdf fW...
Suppose that a firm has the p production function f(x1; x2) = sqrt(x1) + x2^2. (a)...
Suppose that a firm has the p production function f(x1; x2) = sqrt(x1) + x2^2. (a) The marginal product of factor 1 (increases, decreases, stays constant) ------------ as the amount of factor 1 increases. The marginal product of factor 2 (increases, decreases, stays constant) ----------- as the amount of factor 2 increases. (b) This production function does not satisfy the definition of increasing returns to scale, constant returns to scale, or decreasing returns to scale. How can this be? (c)Find...
Nigella has the following utility function over two goods (x1, x2): U(x1, x2) = min {0.5x1,...
Nigella has the following utility function over two goods (x1, x2): U(x1, x2) = min {0.5x1, 3x2} a.What is the Nigella’s utility level if x1= 20 andx2= 3? b.Suppose P1= 1 andP2= 3(where P1is the price x1andP2is theprice of x2) and Nigella has an income of 18. What is Nigella’s budget constraint? Illustrate it in a graph c.Solve for the Nigella’s utility maximizing bundle of x1andx2.
The production function of a competitive firm is given by f(x1, x2) = x1^1/3 (x2 −...
The production function of a competitive firm is given by f(x1, x2) = x1^1/3 (x2 − 1)^1/3 The prices of inputs are w1 = w2 = 1. (a) Compute the firm’s cost function c(y). (b) Compute the marginal and the average cost functions of the firm. (c) Compute the firm’s supply S(p). What is the smallest price at which the firm will produce? 2 (d) Suppose that in the short run, factor 2 is fixed at ¯x2 = 28. Compute...
Burt’s utility function is U(x1, x2)= min{x1,x2}. Suppose the price of good 1 is p1, the...
Burt’s utility function is U(x1, x2)= min{x1,x2}. Suppose the price of good 1 is p1, the price of good p2, the income is y. a. Derive ordinary demand functions. b. Draw indifference curves and budget line for the case when the price of good 1 is 10, the price of good 2 is 20, the income is 1200. c. Find the optimal consumption bundle.
Lauren’s utility function is uL(x1,x2) = min{x1, x2} and Humphrey’s utility function is uH (x1, x2)...
Lauren’s utility function is uL(x1,x2) = min{x1, x2} and Humphrey’s utility function is uH (x1, x2) = ?(x1) + ?(x2). Their endowments are eL = (4,8) and eH = (2,0). a) Suppose Humphrey and Lauren are to simply just consume their given endowments. State the definition of Pareto efficiency. Is this a Pareto efficient allocation? As part of answering this question, can you find an alternative allocation of the goods that Pareto dominates the allocation where Humphrey and Lauren consume...
If the joint probability distribution of X1 and X2 is given by: f(X1, X2) = (X1*X2)/36...
If the joint probability distribution of X1 and X2 is given by: f(X1, X2) = (X1*X2)/36 for X1 = 1, 2, 3 and X2 = 1, 2, 3, find the joint probability distribution of X1*X2 and the joint probability distribution of X1/X2.
Let X1 and X2 have the joint pdf f(x1,x2) = 2 0<x1<x2<1; 0.  elsewhere (a) Find the...
Let X1 and X2 have the joint pdf f(x1,x2) = 2 0<x1<x2<1; 0.  elsewhere (a) Find the conditional densities (pdf) of X1|X2 = x2 and X2|X1 = x1. (b) Find the conditional expectation and variance of X1|X2 = x2 and X2|X1 = x1. (c) Compare the probabilities P(0 < X1 < 1/2|X2 = 3/4) and P(0 < X1 < 1/2). (d) Suppose that Y = E(X2|X1). Verify that E(Y ) = E(X2), and that var(Y ) ≤ var(X2).
Consider the following linear programming problem. min −x1 + 4x2 subject to: • x1 + x2...
Consider the following linear programming problem. min −x1 + 4x2 subject to: • x1 + x2 ≥ 1 • 3x1 + x2 ≤ .5 • x1, x2 ≥ 0 Formulate the dual of this problem.
An industry has 1000 firms, each with the production function f(x1; x2 ) x1^.5 x2^.5. Theprice...
An industry has 1000 firms, each with the production function f(x1; x2 ) x1^.5 x2^.5. Theprice of factor 1 is 1 and the price of factor 2 is 1. In the long run, both factors are variable, but inthe short run, each firm is stuck with using 100 units of factor 2.The long run industry supply curve:Can somebody explain how to solve?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT