Question

In: Advanced Math

Let sn = 21/n+ n sin(nπ/2), n ∈ N. (a) List all subsequential limits of (sn)....

Let sn = 21/n+ n sin(nπ/2), n ∈ N.

(a) List all subsequential limits of (sn).

(b) Give a formula for nk such that (snk) is an unbounded increasing subsequence of (sn).

(c) Give a formula for nk such that (snk) is a convergent subsequence of (sn).

Solutions

Expert Solution


Related Solutions

Let (sn) be a sequence that converges. (a) Show that if sn ≥ a for all...
Let (sn) be a sequence that converges. (a) Show that if sn ≥ a for all but finitely many n, then lim sn ≥ a. (b) Show that if sn ≤ b for all but finitely many n, then lim sn ≤ b. (c) Conclude that if all but finitely many sn belong to [a,b], then lim sn belongs to [a, b].
Let sn be a Cauchy sequence such that ∀n > 1, n ∈ N, ∃m >...
Let sn be a Cauchy sequence such that ∀n > 1, n ∈ N, ∃m > 1, m ∈ N such that |sn − m| = 1/3 (this says that every term of the sequence is an integer plus or minus 1/3 ). Show that the sequence sn is eventually constant, i.e. after a point all terms of the sequence are the same
Abstract Algebra Let n ≥ 2. Show that Sn is generated by each of the following...
Abstract Algebra Let n ≥ 2. Show that Sn is generated by each of the following sets. (a) S1 = {(1, 2), (1, 2, 3), (1, 2, 3, 4), ..., (1, 2, 3,..., n)} (b) S2 = {(1, 2, 3, ..., n-1), (1, 2, 3, ..., n)}
Let τ ∈ Sn be the cycle (1, 2, . . . , k) ∈ Sn...
Let τ ∈ Sn be the cycle (1, 2, . . . , k) ∈ Sn where k ≤ n. (a) For σ ∈ Sn, prove that στσ-1 = (σ(1), σ(2), . . . , σ(k)). (b) Let ρ be any cycle of length k in Sn. Prove that there exists an element σ ∈ Sn so that στσ-1 = ρ.
Show that (a)Sn=<(1 2),(1 3),……(1 n)>. (b)Sn=<(1 2),(2 3),……(n-1 n)> (c)Sn=<(1 2),(1 2 …… n-1 n)>
Show that (a)Sn=<(1 2),(1 3),……(1 n)>. (b)Sn=<(1 2),(2 3),……(n-1 n)> (c)Sn=<(1 2),(1 2 …… n-1 n)>
Sn = (1+(1/n))^n (a) Prove Sn is strictly increasing (b) bounded below by 2 and above...
Sn = (1+(1/n))^n (a) Prove Sn is strictly increasing (b) bounded below by 2 and above by 3 (c) Sn converges to e (d) Obtain an expression for e (e) Prove e is irrational
Let N(n) be the number of all partitions of [n] with no singleton blocks. And let...
Let N(n) be the number of all partitions of [n] with no singleton blocks. And let A(n) be the number of all partitions of [n] with at least one singleton block. Prove that for all n ≥ 1, N(n+1) = A(n). Hint: try to give (even an informal) bijective argument.
Let f1 = 1 and f2=1 and for all n>2 Let fn = fn-1+fn-2. Prove that...
Let f1 = 1 and f2=1 and for all n>2 Let fn = fn-1+fn-2. Prove that for all n, there is no prime p that divides noth fn and fn+1
Let f ( x , y ) = x^ 2 + y ^3 + sin ⁡...
Let f ( x , y ) = x^ 2 + y ^3 + sin ⁡ ( x ^2 + y ^3 ). Determine the line integral of f ( x , y ) with respect to arc length over the unit circle centered at the origin (0, 0).
4. Prove that for any n∈Z+, An ≤Sn.
4. Prove that for any n∈Z+, An ≤Sn.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT