Question

In: Advanced Math

Let f1 = 1 and f2=1 and for all n>2 Let fn = fn-1+fn-2. Prove that...

Let f1 = 1 and f2=1 and for all n>2 Let fn = fn-1+fn-2. Prove that for all n, there is no prime p that divides noth fn and fn+1

Solutions

Expert Solution


Related Solutions

0.3 The Fibonacci numbers Fn are defined by F1 = 1, F2 = 1 and for...
0.3 The Fibonacci numbers Fn are defined by F1 = 1, F2 = 1 and for n >2, Fn = F sub (n-1) + F sub (n-2). Find a formula for Fn by solving the difference equation.
Show that if (1) F1 and F2 are connected sets, and (2) F1 ∩ F2 is...
Show that if (1) F1 and F2 are connected sets, and (2) F1 ∩ F2 is not empty, then  F1 ∪ F2 is connected. also Suppose that F is connected. Show that F¯ (the closure of F) is also connected.
For the Fibonacci sequence, f0 = f1 = 1 and fn+1 = fn + fn−1 for...
For the Fibonacci sequence, f0 = f1 = 1 and fn+1 = fn + fn−1 for all n > 1. Prove using induction: fn+1fn−1 − f2n = (−1)n.
Fibonacci numbers are defined by F0 = 0, F1 = 1 and Fn+2 = Fn+1 +...
Fibonacci numbers are defined by F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn for all n ∈ N ∪ {0}. (1) Make and prove an (if and only if) conjecture about which Fibonacci numbers are multiples of 3. (2) Make a conjecture about which Fibonacci numbers are multiples of 2020. (You do not need to prove your conjecture.) How many base cases would a proof by induction of your conjecture require?
The Fibonacci numbers are recursively dened by F1 = 1; F2 = 1 and for n...
The Fibonacci numbers are recursively dened by F1 = 1; F2 = 1 and for n > 1; F_(n+1) = F_n + F_(n-1): So the rst few Fibonacci Numbers are: 1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; 144; : : : There are numerous properties of the Fibonacci numbers. a) Use the principle of Strong Induction to show that all integers n > 1 and m > 0 F_(n-1)F_(m )+ F_(n)F_(m+1) = F_(n+m): Solution. (Hint: Use...
Compute each of the following: a. F1+F2+F3+F4+F5 b. F1+2+3+4 c. F3xF4 d. F3X4 Given that FN...
Compute each of the following: a. F1+F2+F3+F4+F5 b. F1+2+3+4 c. F3xF4 d. F3X4 Given that FN represents the Nth Fibonacci number, and that F31 =1,346, 269 and F33 = 3,524,578, find the following: a. F32 b. F34 25. Solve the quadratic equation using the quadratic formula: 3x^2-2x-11=0
The magnitudes of F1, F2 and F3 are 300, 190 and 250 N, respectively. F1 is...
The magnitudes of F1, F2 and F3 are 300, 190 and 250 N, respectively. F1 is directed on the slope m = 0.6 m/m. F2 is directed alpha = 0.17 radians from F1. F3 is directed beta =123 degrees from F2. Determine the direction of the Resultant in degrees measured counter-clockwise from the + x-axis.
Given the vector F1 = 100 N, Ѳ1 = 20o , and F2 = 200 N,...
Given the vector F1 = 100 N, Ѳ1 = 20o , and F2 = 200 N, Ѳ2 = 90o   and F3= 300 N, Ѳ3 =220o . Find the magnitude and direction of the resultant F= F1 + F2 + F3 using the following method: Analytical: Use the component method. (6pts.) Graphical: Use the polygon method. (6pts.) Use a percent error calculation to determine how close the graphical result are to the analytical method.
prove 2 is a factor of (n+1)(n+2) for all positive integers
prove 2 is a factor of (n+1)(n+2) for all positive integers
Let ?=2^(2^?)+1 be a prime that n>1 1. Show that ? ≡ 2(mod5) 2. Prove that...
Let ?=2^(2^?)+1 be a prime that n>1 1. Show that ? ≡ 2(mod5) 2. Prove that 5 is a primitive root modulo ?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT