Question

In: Advanced Math

Let τ ∈ Sn be the cycle (1, 2, . . . , k) ∈ Sn...

Let τ ∈ Sn be the cycle (1, 2, . . . , k) ∈ Sn where k ≤ n.

(a) For σ ∈ Sn, prove that στσ-1 = (σ(1), σ(2), . . . , σ(k)).

(b) Let ρ be any cycle of length k in Sn. Prove that there exists an element σ ∈ Sn so that στσ-1 = ρ.

Solutions

Expert Solution


Related Solutions

Let S_k(n) = 1^k + 2^k + ··· + n^k for n, k ≥ 1. Then,...
Let S_k(n) = 1^k + 2^k + ··· + n^k for n, k ≥ 1. Then, S_4(n) is given by S_4(n)= n(n+1)(2n+1)(3n^2 +3n−1)/ 30 Prove by mathematical induction.
Let (sn) be a sequence that converges. (a) Show that if sn ≥ a for all...
Let (sn) be a sequence that converges. (a) Show that if sn ≥ a for all but finitely many n, then lim sn ≥ a. (b) Show that if sn ≤ b for all but finitely many n, then lim sn ≤ b. (c) Conclude that if all but finitely many sn belong to [a,b], then lim sn belongs to [a, b].
1) a) Let k ≥  2 and let G be a k-regular bipartite graph. Prove that G...
1) a) Let k ≥  2 and let G be a k-regular bipartite graph. Prove that G has no cut-edge. (Hint: Use the bipartite version of handshaking.) b) Construct a simple, connected, nonbipartite 3-regular graph with a cut-edge. (This shows that the condition “bipartite” really is necessary in (a).) 2) Let F_n be a fan graph and Let a_n = τ(F_n) where τ(F_n) is the number of spanning trees in F_n. Use deletion/contraction to prove that a_n = 3a_n-1 - a_n-2...
Show that (a)Sn=<(1 2),(1 3),……(1 n)>. (b)Sn=<(1 2),(2 3),……(n-1 n)> (c)Sn=<(1 2),(1 2 …… n-1 n)>
Show that (a)Sn=<(1 2),(1 3),……(1 n)>. (b)Sn=<(1 2),(2 3),……(n-1 n)> (c)Sn=<(1 2),(1 2 …… n-1 n)>
Let K = { s+t * 2^(1/2), such that s, t are Rational}. Show that K...
Let K = { s+t * 2^(1/2), such that s, t are Rational}. Show that K is a Field
Let sn = 21/n+ n sin(nπ/2), n ∈ N. (a) List all subsequential limits of (sn)....
Let sn = 21/n+ n sin(nπ/2), n ∈ N. (a) List all subsequential limits of (sn). (b) Give a formula for nk such that (snk) is an unbounded increasing subsequence of (sn). (c) Give a formula for nk such that (snk) is a convergent subsequence of (sn).
Let S = {2 k : k ∈ Z}. Let R be a relation defined on...
Let S = {2 k : k ∈ Z}. Let R be a relation defined on Q− {0} by x R y if x y ∈ S. Prove that R is an equivalence relation. Determine the equivalence class
Let k be an integer satisfying k ≥ 2. Let G be a connected graph with...
Let k be an integer satisfying k ≥ 2. Let G be a connected graph with no cycles and k vertices. Prove that G has at least 2 vertices of degree equal to 1.
Abstract Algebra Let n ≥ 2. Show that Sn is generated by each of the following...
Abstract Algebra Let n ≥ 2. Show that Sn is generated by each of the following sets. (a) S1 = {(1, 2), (1, 2, 3), (1, 2, 3, 4), ..., (1, 2, 3,..., n)} (b) S2 = {(1, 2, 3, ..., n-1), (1, 2, 3, ..., n)}
Let sn be a Cauchy sequence such that ∀n > 1, n ∈ N, ∃m >...
Let sn be a Cauchy sequence such that ∀n > 1, n ∈ N, ∃m > 1, m ∈ N such that |sn − m| = 1/3 (this says that every term of the sequence is an integer plus or minus 1/3 ). Show that the sequence sn is eventually constant, i.e. after a point all terms of the sequence are the same
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT